
Hengyao Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027621/publications.pdf Version: 2024-02-01

Ηενιζάλο Νιμ

#	Article	IF	CITATIONS
1	Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature, 2010, 467, 108-111.	27.8	349
2	Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs. Science Signaling, 2010, 3, ra12.	3.6	341
3	Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature, 2013, 502, 393-396.	27.8	265
4	DNA Sequence Alignment by Microhomology Sampling during Homologous Recombination. Cell, 2015, 160, 856-869.	28.9	182
5	Concentration-Dependent Exchange of Replication Protein A on Single-Stranded DNA Revealed by Single-Molecule Imaging. PLoS ONE, 2014, 9, e87922.	2.5	176
6	Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nature Structural and Molecular Biology, 2011, 18, 1015-1019.	8.2	165
7	Regulation of Meiotic Recombination via Mek1-Mediated Rad54 Phosphorylation. Molecular Cell, 2009, 36, 393-404.	9.7	158
8	Nucleosome dynamics regulates DNA processing. Nature Structural and Molecular Biology, 2013, 20, 836-842.	8.2	130
9	Cdc28–Clb5 (CDK-S) and Cdc7–Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes and Development, 2008, 22, 386-397.	5.9	124
10	Mek1 Kinase Is Regulated To Suppress Double-Strand Break Repair between Sister Chromatids during Budding Yeast Meiosis. Molecular and Cellular Biology, 2007, 27, 5456-5467.	2.3	121
11	Biochemical mechanism of DSB end resection and its regulation. DNA Repair, 2015, 32, 66-74.	2.8	107
12	Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nature Structural and Molecular Biology, 2014, 21, 893-900.	8.2	81
13	Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Research, 2012, 40, 1091-1105.	14.5	76
14	Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature, 2014, 511, 251-254.	27.8	75
15	RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Research, 2016, 44, 6335-6349.	14.5	63
16	Multifaceted role of the Topo IIIα–RMI1-RMI2 complex and DNA2 in the BLM-dependent pathway of DNA break end resection. Nucleic Acids Research, 2014, 42, 11083-11091.	14.5	60
17	Restriction of Replication Fork Regression Activities by a Conserved SMC Complex. Molecular Cell, 2014, 56, 436-445.	9.7	60
18	Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair, 2011, 10, 1034-1043.	2.8	54

Ηενσγλό Νιυ

#	Article	IF	CITATIONS
19	A PRC2-independent function for EZH2 in regulating rRNA 2′-O methylation and IRES-dependent translation. Nature Cell Biology, 2021, 23, 341-354.	10.3	54
20	Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks. PLoS Biology, 2016, 14, e1002387.	5.6	44
21	Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLoS Biology, 2015, 13, e1002329.	5.6	43
22	Investigations of homologous recombination pathways and their regulation. Yale Journal of Biology and Medicine, 2013, 86, 453-61.	0.2	40
23	Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Research, 2016, 44, 2742-2753.	14.5	39
24	Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection. Journal of Biological Chemistry, 2015, 290, 18806-18816.	3.4	38
25	Multifunctional Roles of <i>Saccharomyces cerevisiae</i> Srs2 protein in Replication, Recombination and Repair. FEMS Yeast Research, 2017, 17, fow111.	2.3	38
26	Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO Journal, 2015, 34, 1509-1522.	7.8	37
27	Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Molecular Cell, 2019, 76, 699-711.e6.	9.7	37
28	DNA double-strand break processing: the beginning of the end. Genes and Development, 2008, 22, 2903-2907.	5.9	33
29	Nucleosome-like, Single-stranded DNA (ssDNA)-Histone Octamer Complexes and the Implication for DNA Double Strand Break Repair. Journal of Biological Chemistry, 2017, 292, 5271-5281.	3.4	33
30	A novel role of the Dna2 translocase function in DNA break resection. Genes and Development, 2017, 31, 503-510.	5.9	33
31	Multiplicity of DNA end resection machineries in chromosome break repair. Genes and Development, 2009, 23, 1481-1486.	5.9	32
32	Apn2 resolves blocked 3′ ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nature Structural and Molecular Biology, 2019, 26, 155-163.	8.2	28
33	Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10028-10033.	7.1	25
34	Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes and Development, 2015, 29, 1000-1005.	5.9	17
35	Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes and Development, 2016, 30, 687-699.	5.9	17
36	Deciphering the mechanism of processive ssDNA digestion by the Dna2-RPA ensemble. Nature Communications, 2022, 13, 359.	12.8	12

Ηενσγλό Νιυ

#	Article	IF	CITATIONS
37	Metal-mediated diradical tuning for DNA replication arrest via template strand scission. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7405-E7414.	7.1	11
38	Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes. Microbial Cell, 2019, 6, 65-101.	3.2	10
39	Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nature Communications, 2021, 12, 321.	12.8	10
40	Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA. Cell Cycle, 2016, 15, 331-336.	2.6	9
41	Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Analytical Chemistry, 2021, 93, 8484-8492.	6.5	8
42	Molecular Mechanism of Resolving Trinucleotide Repeat Hairpin by Helicases. Structure, 2015, 23, 1018-1027.	3.3	6
43	DNA duplex recognition activates Exo1 nuclease activity. Journal of Biological Chemistry, 2019, 294, 11559-11567.	3.4	5
44	Mechanistic insights into the multiple activities of the Rad5 family of enzymes. Journal of Molecular Biology, 2022, , 167581.	4.2	1
45	Structure of Rad5 provides insights into its role in tolerance to replication stress. Molecular and Cellular Oncology, 2021, 8, 1889348.	0.7	0