Tianwei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8027063/publications.pdf

Version: 2024-02-01

		109321	95266
109	5,235	35	68
papers	citations	h-index	g-index
110	110	110	8452
	110		
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Salivary proteomic and genomic biomarkers for primary Sj \tilde{A} \P gren's syndrome. Arthritis and Rheumatism, 2007, 56, 3588-3600.	6.7	333
2	The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet, The, 2017, 390, 649-658.	13.7	309
3	apLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics, 2009, 25, 1930-1936.	4.1	303
4	xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics, 2013, 14, 15.	2.6	301
5	Transcriptomic dissection of tongue squamous cell carcinoma. BMC Genomics, 2008, 9, 69.	2.8	276
6	Metabolic Phenotypes of Response to Vaccination in Humans. Cell, 2017, 169, 862-877.e17.	28.9	234
7	Characterization of RNA in Saliva. Clinical Chemistry, 2006, 52, 988-994.	3.2	182
8	Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell, 2019, 177, 1566-1582.e17.	28.9	153
9	An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Research, 2006, 34, 3150-3160.	14.5	136
10	Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environment International, 2018, 120, 145-154.	10.0	113
11	A graph-embedded deep feedforward network for disease outcome classification and feature selection using gene expression data. Bioinformatics, 2018, 34, 3727-3737.	4.1	105
12	A Deep Neural Network Model using Random Forest to Extract Feature Representation for Gene Expression Data Classification. Scientific Reports, 2018, 8, 16477.	3.3	102
13	Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Research, 2009, 37, 5365-5377.	14.5	99
14	A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864.	3. 5	90
15	Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4 ⁺ T cells, and disease progression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1480-9.	7.1	87
16	Role of Transmitted Gag CTL Polymorphisms in Defining Replicative Capacity and Early HIV-1 Pathogenesis. PLoS Pathogens, 2012, 8, e1003041.	4.7	86
17	Optical protein sensor for detecting cancer markers in saliva. Biosensors and Bioelectronics, 2008, 24, 266-271.	10.1	83
18	Hybrid Feature Detection and Information Accumulation Using High-Resolution LC–MS Metabolomics Data. Journal of Proteome Research, 2013, 12, 1419-1427.	3.7	81

#	Article	IF	CITATIONS
19	Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. Environment International, 2019, 127, 503-513.	10.0	78
20	Characterization of salivary RNA by cDNA library analysis. Archives of Oral Biology, 2007, 52, 30-35.	1.8	75
21	GM-CSF DNA: An adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. Virology, 2007, 369, 153-167.	2.4	75
22	Distinct Effector Memory CD4+ T Cell Signatures in Latent Mycobacterium tuberculosis Infection, BCG Vaccination and Clinically Resolved Tuberculosis. PLoS ONE, 2012, 7, e36046.	2.5	75
23	Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 2011, 27, 199-205.	2.4	65
24	A system for enhancing genome-wide coexpression dynamics study. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15561-15566.	7.1	64
25	Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics, 2005, 21, 4033-4038.	4.1	62
26	Novel Metabolic Markers for the Risk of Diabetes Development in American Indians. Diabetes Care, 2015, 38, 220-227.	8.6	62
27	Deregulation of Snai2 is associated with metastasis and poor prognosis in tongue squamous cell carcinoma. International Journal of Cancer, 2012, 130, 2249-2258.	5.1	57
28	Location analysis for the estrogen receptor- \hat{l} \pm reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements. Nucleic Acids Research, 2010, 38, 2355-2368.	14.5	54
29	CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus SIV239 Vaccine Enhances SIV-Specific Humoral and Cellular Immunity and Improves Protection against a Heterologous SIVE660 Mucosal Challenge. Journal of Virology, 2014, 88, 9579-9589.	3.4	53
30	Downâ€regulation of tumor suppressor MTUS1/ATIP is associated with enhanced proliferation, poor differentiation and poor prognosis in oral tongue squamous cell carcinoma. Molecular Oncology, 2012, 6, 73-80.	4.6	50
31	RNAprotect Saliva: An Optimal Room-Temperature Stabilization Reagent for the Salivary Transcriptome. Clinical Chemistry, 2006, 52, 2303-2304.	3.2	49
32	Metabolomics profile comparisons of irradiated and nonirradiated stored donor red blood cells. Transfusion, 2015, 55, 544-552.	1.6	49
33	microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncology, 2016, 57, 15-20.	1.5	48
34	Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Bioinformatics, 2014, 30, 2941-2948.	4.1	47
35	miR-486-3p, miR-139-5p, and miR-21 as Biomarkers for the Detection of Oral Tongue Squamous Cell Carcinoma. Biomarkers in Cancer, 2017, 9, 1-8.	3.6	38
36	Particulate metal exposures induce plasma metabolome changes in a commuter panel study. PLoS ONE, 2018, 13, e0203468.	2.5	37

#	Article	IF	CITATIONS
37	Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. Journal of Breath Research, 2018, 12, 016008.	3.0	36
38	Detection of eQTL modules mediated by activity levels of transcription factors. Bioinformatics, 2007, 23, 2290-2297.	4.1	35
39	Quantification and deconvolution of asymmetric LC-MS peaks using the bi-Gaussian mixture model and statistical model selection. BMC Bioinformatics, 2010, 11, 559.	2.6	34
40	Deletion of Specific Immune-Modulatory Genes from Modified Vaccinia Virus Ankara-Based HIV Vaccines Engenders Improved Immunogenicity in Rhesus Macaques. Journal of Virology, 2012, 86, 12605-12615.	3.4	34
41	miR-486-3p, miR-139-5p, and miR-21 as Biomarkers for the Detection of Oral Tongue Squamous Cell Carcinoma. Biomarkers in Cancer, 2017, 9, 1179299X1700900.	3.6	33
42	Plasma Highâ€Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. Obesity, 2019, 27, 1729-1737.	3.0	32
43	Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma. BMC Cancer, 2010, 10, 365.	2.6	31
44	HIV-1 subtype C superinfected individuals mount low autologous neutralizing antibody responses prior to intrasubtype superinfection. Retrovirology, 2012, 9, 76.	2.0	31
45	Accurate feature selection improves single-cell RNA-seq cell clustering. Briefings in Bioinformatics, 2021, 22, .	6.5	31
46	Identification and Classification of Acute Cardiac Rejection by Intragraft Transcriptional Profiling. Circulation, 2011, 123, 2236-2243.	1.6	30
47	Balance between transmitted HLA preadapted and nonassociated polymorphisms is a major determinant of HIV-1 disease progression. Journal of Experimental Medicine, 2016, 213, 2049-2063.	8.5	30
48	Decreased humoral immunity to mumps in young adults immunized with MMR vaccine in childhood. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19071-19076.	7.1	30
49	Immunogenicity in Macaques of the Clinical Product for a Clade B DNA/MVA HIV Vaccine: Elicitation of IFN-Î ³ , IL-2, and TNF-α Coproducing CD4 and CD8 T Cells. AIDS Research and Human Retroviruses, 2007, 23, 1555-1562.	1.1	29
50	A new dynamic correlation algorithm reveals novel functional aspects in single cell and bulk RNA-seq data. PLoS Computational Biology, 2018, 14, e1006391.	3.2	29
51	Postprandial Cysteine/Cystine Redox Potential in Human Plasma Varies with Meal Content of Sulfur Amino Acids. Journal of Nutrition, 2010, 140, 760-765.	2.9	28
52	Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Scientific Reports, 2020, 10, 13856.	3.3	28
53	Mitigating the adverse impact of batch effects in sample pattern detection. Bioinformatics, 2018, 34, 2634-2641.	4.1	25
54	A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array. BMC Bioinformatics, 2007, 8, 145.	2.6	24

#	Article	IF	CITATIONS
55	Incorporating Nonlinear Relationships in Microarray Missing Value Imputation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 723-731.	3.0	24
56	Global Gene Expression Profiling of Endothelium Exposed to Heme Reveals an Organ-Specific Induction of Cytoprotective Enzymes in Sickle Cell Disease. PLoS ONE, 2011, 6, e18399.	2.5	24
57	Metabolic effects of albumin therapy in acute lung injury measured by proton nuclear magnetic resonance spectroscopy of plasma: A pilot study*. Critical Care Medicine, 2011, 39, 2308-2313.	0.9	24
58	EgoNet: identification of human disease ego-network modules. BMC Genomics, 2014, 15, 314.	2.8	24
59	Local false discovery rate estimation using feature reliability in LC/MS metabolomics data. Scientific Reports, 2015, 5, 17221.	3.3	24
60	Comparative studies on in vitro expression and in vivo immunogenicity of supercoiled and open circular forms of plasmid DNA vaccines. Vaccine, 2008, 26, 1136-1141.	3.8	23
61	Metabolic profiles of biological aging in American Indians: The strong heart family study. Aging, 2014, 6, 176-186.	3.1	22
62	forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction. Bioinformatics, 2020, 36, 3507-3515.	4.1	22
63	scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment. Bioinformatics, 2020, 36, 3115-3123.	4.1	22
64	ROCS: Receiver Operating Characteristic Surface for Class-Skewed High-Throughput Data. PLoS ONE, 2012, 7, e40598.	2.5	21
65	The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60–69 years (China BAPE Study). Environment International, 2021, 157, 106866.	10.0	21
66	A single-cell analysis of the molecular lineage of chordate embryogenesis. Science Advances, 2020, 6, .	10.3	18
67	Missing value imputation for LC-MS metabolomics data by incorporating metabolic network and adduct ion relations. Bioinformatics, 2018, 34, 1555-1561.	4.1	17
68	Hepatic fat is a stronger correlate of key clinical and molecular abnormalities than visceral and abdominal subcutaneous fat in youth. BMJ Open Diabetes Research and Care, 2020, 8, e001126.	2.8	15
69	Immunologic mechanisms of seasonal influenza vaccination administered by microneedle patch from a randomized phase I trial. Npj Vaccines, 2021, 6, 89.	6.0	15
70	Hierarchical Clustering of High-Throughput Expression Data Based on General Dependences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 1080-1085.	3.0	14
71	Elevation of Alanine Aminotransferase Activity Occurs after Activation of the Cell-Death Signaling Initiated by Pattern-Recognition Receptors ‎but before Activation of Cytolytic Effectors in NK or CD8+T Cells in the Liver During Acute HCV Infection. PLoS ONE, 2016, 11, e0165533.	2.5	14
72	Strong T $<$ sub $>$ H $<$ /sub $>$ 1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Science Translational Medicine, 2019, 11, .	12.4	14

#	Article	IF	CITATIONS
73	The Oxidative Potential of Fine Particulate Matter and Biological Perturbations in Human Plasma and Saliva Metabolome. Environmental Science & Environmental &	10.0	14
74	ROC Curve Analysis in the Presence of Imperfect Reference Standards. Statistics in Biosciences, 2017, 9, 91-104.	1.2	13
75	Study of coordinative gene expression at the biological process level. Bioinformatics, 2005, 21, 3651-3657.	4.1	11
76	Capturing changes in gene expression dynamics by gene set differential coordination analysis. Genomics, 2011, 98, 469-477.	2.9	11
77	Nonlinear Network Reconstruction from Gene Expression Data Using Marginal Dependencies Measured by DCOL. PLoS ONE, 2016, 11, e0158247.	2.5	11
78	Bayesian network feature finder (BANFF): an R package for gene network feature selection. Bioinformatics, 2016, 32, 3685-3687.	4.1	11
79	Network Marker Selection for Untargeted LC–MS Metabolomics Data. Journal of Proteome Research, 2017, 16, 1261-1269.	3.7	11
80	AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments. PLoS Computational Biology, 2022, 18, e1009826.	3.2	11
81	An exploratory data analysis method to reveal modular latent structures in high-throughput data. BMC Bioinformatics, 2010, 11, 440.	2.6	10
82	A Sulfur Amino Acid–Free Meal Increases Plasma Lipids in Humans. Journal of Nutrition, 2011, 141, 1424-1431.	2.9	10
83	A Bayesian nonparametric mixture model for selecting genes and gene subnetworks. Annals of Applied Statistics, 2014, 8, 999-1021.	1.1	10
84	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> id="M1"><mml:mrow><mml:mi>K</mml:mi></mml:mrow></mml:math> -Profiles: A Nonlinear Clustering Method for Pattern Detection in High Dimensional Data. BioMed Research International, 2015, 2015, 1-10.	1.9	10
85	Dimension reduction and mixed-effects model for microarray meta-analysis of cancer. Frontiers in Bioscience - Landmark, 2008, 13, 2714.	3.0	10
86	Analyzing LC/MS Metabolic Profiling Data in the Context of Existing Metabolic Networks. Current Metabolomics, 2012, 1, 84-91.	0.5	7
87	Differential gene network analysis from single cell RNA-seq. Journal of Genetics and Genomics, 2017, 44, 331-334.	3.9	7
88	Detecting subnetwork-level dynamic correlations. Bioinformatics, 2017, 33, 256-265.	4.1	7
89	Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior. Bayesian Analysis, 2020, 15, 79-102.	3.0	7
90	Advancement in characterization of genomic alterations for improved diagnosis, treatment and prognostics in cancer. Expert Review of Molecular Diagnostics, 2006, 6, 39-50.	3.1	6

#	Article	IF	Citations
91	A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale. BMC Genomics, 2019, 20, 397.	2.8	6
92	The Regulation of Subtilisin-cleaved Actin by Tropomyosin/Troponin. Journal of Biological Chemistry, 2003, 278, 5517-5522.	3.4	5
93	Metabolomic Profiling After a Meal Shows Greater Changes and Lower Metabolic Flexibility in Cardiometabolic Diseases. Journal of the Endocrine Society, 2020, 4, bvaa127.	0.2	5
94	Improving gene expression data interpretation by finding latent factors that co-regulate gene modules with clinical factors. BMC Genomics, 2011, 12, 563.	2.8	3
95	Fc-gamma receptor IIA and IIIA variants in two African cohorts: Lack of consistent impact on heterosexual HIV acquisition, viral control, and disease progression. Virology, 2018, 525, 132-142.	2.4	3
96	Macronutrient, Energy, and Bile Acid Metabolism Pathways Altered Following a Physiological Meal Challenge, Relative to Fasting, among Guatemalan Adults. Journal of Nutrition, 2020, 150, 2031-2040.	2.9	3
97	Elevated levels of inflammatory plasma biomarkers are associated with risk of HIV infection. Retrovirology, 2021, 18, 8.	2.0	3
98	Comparative plasma highâ€resolution metabolomic profiling in patients with drugâ€susceptible and multiâ€drug resistant pulmonary tuberculosis. FASEB Journal, 2015, 29, .	0.5	3
99	Network-based modular latent structure analysis. BMC Bioinformatics, 2014, 15, S6.	2.6	2
100	Clustering based on periodicity in highâ€ŧhroughput time course data. Statistical Analysis and Data Mining, 2011, 4, 579-589.	2.8	1
101	AAPL: assessing association between <i>p</i> à€value lists. Statistical Analysis and Data Mining, 2013, 6, 144-155.	2.8	1
102	DNLC: differential network local consistency analysis. BMC Bioinformatics, 2019, 20, 489.	2.6	1
103	Feature selection and classification over the network with missing node observations. Statistics in Medicine, 2022, 41, 1242-1262.	1.6	1
104	Sphinganine is associated with 24-h MAP in the non-sleepy with OSA. Metabolomics, 2022, 18, 23.	3.0	1
105	Incorporating feature reliability in false discovery rateestimation improves statistical power to detect differentially expressed features. , 2014, , .		0
106	MeDiA: Mean Distance Association and Its Applications in Nonlinear Gene Set Analysis. PLoS ONE, 2015, 10, e0124620.	2.5	0
107	Nonlinear variable selection with continuous outcome: A fully nonparametric incremental forward stagewise approach. Statistical Analysis and Data Mining, 2018, 11, 188-197.	2.8	0
108	Metabolomic Profile Responses to a Standardized Meal Challenge Differ by Cardiometabolic Disease Status. Current Developments in Nutrition, 2020, 4, nzaa049_068.	0.3	0

#	Article	IF	CITATIONS
109	An Untargeted Metabolomic Study of the Effects of Vitamin D and/or Calcium Supplementation Among Individuals at High Risk for Colorectal Neoplasms. Current Developments in Nutrition, 2020, 4, nzaa044_042.	0.3	0