
## Hiep Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8025767/publications.pdf Version: 2024-02-01



Ηιές Ηλνι

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Band gap engineered TiO <sub>2</sub> nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2014, 2, 637-644.                                                                          | 10.3 | 751       |
| 2  | Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5, 9238.                                                                                                                          | 5.6  | 523       |
| 3  | Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO<br>Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 27023-27030.                                                                                              | 3.1  | 368       |
| 4  | Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale, 2013, 5, 4427.                                                                                             | 5.6  | 219       |
| 5  | Environmentally Sustainable Fabrication of Ag@ <i>g-</i> C <sub>3</sub> N <sub>4</sub><br>Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS<br>Applied Nano Materials, 2018, 1, 2912-2922.                 | 5.0  | 142       |
| 6  | CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and<br>Photoelectrochemical Applications. Journal of Colloid and Interface Science, 2016, 482, 221-232.                                                                       | 9.4  | 140       |
| 7  | Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Scientific Reports, 2017, 7, 5928.                                                             | 3.3  | 133       |
| 8  | Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation,<br>electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 2015, 39,<br>8121-8129.                                            | 2.8  | 130       |
| 9  | Biogenic Fabrication of Au@CeO <sub>2</sub> Nanocomposite with Enhanced Visible Light Activity.<br>Journal of Physical Chemistry C, 2014, 118, 9477-9484.                                                                                                  | 3.1  | 123       |
| 10 | Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. Journal of<br>Industrial and Engineering Chemistry, 2014, 20, 1602-1607.                                                                                            | 5.8  | 104       |
| 11 | Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO <sub>2</sub><br>nanocomposites synthesized using an electrochemically active biofilm. RSC Advances, 2014, 4,<br>26013-26021.                                                | 3.6  | 103       |
| 12 | Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO <sub>2</sub> nanostructures. New Journal of Chemistry, 2015, 39, 2758-2766.                                                                           | 2.8  | 101       |
| 13 | Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Scientific Reports, 2018, 8, 1723.                                                                                           | 3.3  | 91        |
| 14 | Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale, 2018, 10, 9427-9440.                                                                                                                                                        | 5.6  | 89        |
| 15 | Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of<br>Ag/TiO <sub>2</sub> @Polyaniline Nanocomposite Film. ACS Applied Materials & Interfaces, 2014, 6,<br>8124-8133.                                     | 8.0  | 81        |
| 16 | Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene<br>nanocomposite. RSC Advances, 2015, 5, 26897-26904.                                                                                                               | 3.6  | 80        |
| 17 | Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.                                                     | 6.1  | 77        |
| 18 | Biofilm-Assisted Fabrication of Ag@SnO <sub>2</sub> - <i>g</i> -C <sub>3</sub> N <sub>4</sub><br>Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance.<br>Journal of Physical Chemistry C, 2019, 123, 20936-20948. | 3.1  | 60        |

Hiep Han

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic<br>g-C <sub>3</sub> N <sub>4</sub> nanostructures towards improved photoelectrochemical<br>performances. RSC Advances, 2018, 8, 13898-13909.                                             | 3.6 | 50        |
| 20 | Mixed Culture Electrochemically Active Biofilms and their Microscopic and Spectroelectrochemical Studies. ACS Sustainable Chemistry and Engineering, 2014, 2, 423-432.                                                                                                | 6.7 | 46        |
| 21 | Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation. Ceramics International, 2021, 47, 15073-15081.                                            | 4.8 | 36        |
| 22 | Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications.<br>Ceramics International, 2021, 47, 23578-23589.                                                                                                                   | 4.8 | 36        |
| 23 | Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. Journal of Physics and Chemistry of Solids, 2017, 104, 233-242.                                                                         | 4.0 | 27        |
| 24 | Synergistic performance of <scp> Fe <sub>3</sub> O <sub>4</sub> </scp> / <scp> SnO <sub>2</sub> </scp> / <scp>rGO</scp> nanocomposite for supercapacitor and visible lightâ€responsive photocatalysis. International Journal of Energy Research, 2022, 46, 6517-6528. | 4.5 | 10        |
| 25 | Graphitic‑carbon nitride based mixed-phase bismuth nanostructures: Tuned optical and structural properties with boosted photocatalytic performance for wastewater decontamination under visible-light irradiation. NanoImpact, 2021, 23, 100345.                      | 4.5 | 8         |