
Mauricio Rostagno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8025475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research, 2009, 58, 537-552.	4.0	783
2	Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A, 2003, 1012, 119-128.	3.7	465
3	Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 2011, 128, 674-678.	8.2	346
4	Edible mushrooms: Role in the prevention of cardiovascular diseases. Fìtoterapìâ, 2010, 81, 715-723.	2.2	277
5	Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 2020, 8, 507887.	3.6	220
6	Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Research International, 2015, 77, 675-683.	6.2	190
7	Sample preparation for the analysis of isoflavones from soybeans and soy foods. Journal of Chromatography A, 2009, 1216, 2-29.	3.7	164
8	Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. Journal of Supercritical Fluids, 2014, 95, 8-16.	3.2	160
9	Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. Journal of Supercritical Fluids, 2017, 119, 9-16.	3.2	153
10	Pressurized liquid extraction of isoflavones from soybeans. Analytica Chimica Acta, 2004, 522, 169-177.	5.4	146
11	Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. Journal of Supercritical Fluids, 2014, 94, 223-233.	3.2	139
12	Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Analytica Chimica Acta, 2011, 685, 204-211.	5.4	137
13	Microwave assisted extraction of soy isoflavones. Analytica Chimica Acta, 2007, 588, 274-282.	5.4	135
14	Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. Journal of Supercritical Fluids, 2013, 77, 70-78.	3.2	135
15	Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens) Tj ETQq1 🕻	1 0.78431 8.2	4 ggBT /Over
16	Subcritical water extraction of flavanones from defatted orange peel. Journal of Supercritical Fluids, 2018, 138, 7-16.	3.2	126
17	Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resources, Conservation and Recycling, 2013, 77, 78-88.	10.8	125
18	Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 2017, 101, 1-10.	3.6	117

#	Article	IF	CITATIONS
19	Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering, 2019, 240, 105-113.	5.2	111
20	Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food and Bioproducts Processing, 2016, 98, 95-123.	3.6	110
21	Recovery of anthocyanins from residues of Rubus fruticosus , Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 2017, 231, 1-10.	8.2	110
22	Combining pressurized liquids with ultrasound to improve the extraction of phenolic compounds from pomegranate peel (Punica granatum L.). Ultrasonics Sonochemistry, 2018, 48, 151-162.	8.2	107
23	Supercritical fluid extraction of isoflavones from soybean flour. Food Chemistry, 2002, 78, 111-117.	8.2	99
24	Recovery of phenolic compounds from citrus by-products using pressurized liquids — An application to orange peel. Food and Bioproducts Processing, 2018, 112, 9-21.	3.6	97
25	Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. Journal of Supercritical Fluids, 2014, 95, 167-174.	3.2	96
26	Ultrasound-assisted extraction of isoflavones from soy beverages blended with fruit juices. Analytica Chimica Acta, 2007, 597, 265-272.	5.4	88
27	Content and Profile of Isoflavones in Soy-Based Foods as a Function of the Production Process. Food and Bioprocess Technology, 2011, 4, 27-38.	4.7	85
28	Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. Journal of Supercritical Fluids, 2014, 89, 89-98.	3.2	83
29	In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chemistry, 2014, 161, 216-223.	8.2	83
30	Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. Journal of Supercritical Fluids, 2015, 104, 183-192.	3.2	79
31	Supercritical fluid and pressurized liquid extractions of phytonutrients from passion fruit by-products: Economic evaluation of sequential multi-stage and single-stage processes. Journal of Supercritical Fluids, 2017, 122, 88-98.	3.2	71
32	Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technology, 2018, 340, 553-562.	4.2	68
33	Techno-economic evaluation of the extraction of turmeric (Curcuma longa L.) oil and ar-turmerone using supercritical carbon dioxide. Journal of Supercritical Fluids, 2015, 105, 44-54.	3.2	67
34	Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review. Biofuel Research Journal, 2017, 4, 611-626.	13.3	66
35	Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. Journal of Supercritical Fluids, 2014, 93, 42-48.	3.2	65
36	Sub- and supercritical fluid technology applied to food waste processing. Journal of Supercritical Fluids, 2015, 96, 272-286.	3.2	65

MAURICIO ROSTAGNO

#	Article	IF	CITATIONS
37	Sequential high pressure extractions applied to recover piceatannol and scirpusin B from passion fruit bagasse. Food Research International, 2016, 85, 51-58.	6.2	65
38	Subcritical water hydrolysis of brewer's spent grains: Selective production of hemicellulosic sugars (C-5 sugars). Journal of Supercritical Fluids, 2019, 145, 19-30.	3.2	64
39	Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology, 2017, 243, 1069-1077.	9.6	63
40	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	5.7	62
41	Solid-phase extraction of soy isoflavones. Journal of Chromatography A, 2005, 1076, 110-117.	3.7	61
42	Hydrolysis of sugarcane bagasse in subcritical water. Journal of Supercritical Fluids, 2014, 86, 15-22.	3.2	61
43	Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chemistry, 2016, 200, 167-174.	8.2	61
44	Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrasonics Sonochemistry, 2021, 74, 105584.	8.2	61
45	Extraction of bioactive compounds from peach palm pulp (Bactris gasipaes) using supercritical CO2. Journal of Supercritical Fluids, 2014, 93, 2-6.	3.2	60
46	Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum). Ultrasonics Sonochemistry, 2016, 31, 284-294.	8.2	60
47	Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food and Bioproducts Processing, 2016, 100, 382-390.	3.6	59
48	Process integration for turmeric products extraction using supercritical fluids and pressurized liquids: Economic evaluation. Food and Bioproducts Processing, 2016, 98, 227-235.	3.6	59
49	Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. Journal of Supercritical Fluids, 2018, 133, 86-93.	3.2	57
50	Combinatory and hyphenated sample preparation for the determination of bioactive compounds in foods. TrAC - Trends in Analytical Chemistry, 2010, 29, 553-561.	11.4	56
51	Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chemistry, 2020, 318, 126450.	8.2	50
52	Fast analysis of soy isoflavones by high-performance liquid chromatography with monolithic columns. Analytica Chimica Acta, 2007, 582, 243-249.	5.4	46
53	Extraction of bioactive compounds from pomegranate peel (Punica granatum L.) with pressurized liquids assisted by ultrasound combined with an expansion gas. Ultrasonics Sonochemistry, 2019, 54, 11-17.	8.2	46
54	Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 2019, 115, 160-166.	6.2	44

#	Article	IF	CITATIONS
55	Short-term stability of soy isoflavones extracts: Sample conservation aspects. Food Chemistry, 2005, 93, 557-564.	8.2	42
56	Extraction of polyphenols and antioxidants from pomegranate peel using ultrasound: influence of temperature, frequency and operation mode. International Journal of Food Science and Technology, 2019, 54, 2792-2801.	2.7	42
57	Pomegranate Juice and Peel Extracts are Able to Inhibit Proliferation, Migration and Colony Formation of Prostate Cancer Cell Lines and Modulate the Akt/mTOR/S6K Signaling Pathway. Plant Foods for Human Nutrition, 2020, 75, 54-62.	3.2	40
58	Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. Journal of Supercritical Fluids, 2020, 160, 104789.	3.2	38
59	Extraction of bioactive compounds from defatted passion fruit bagasse (Passiflora edulis sp.) applying pressurized liquids assisted by ultrasound. Ultrasonics Sonochemistry, 2020, 64, 104999.	8.2	38
60	Fast analysis of isoflavones by high-performance liquid chromatography using a column packed with fused-core particles. Talanta, 2010, 82, 1986-1994.	5.5	37
61	Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chemistry: X, 2021, 12, 100133.	4.3	34
62	Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 108, 26-34.	3.2	33
63	Isolation of gallic acid, caffeine and flavonols from black tea by on-line coupling of pressurized liquid extraction with an adsorbent for the production of functional bakery products. LWT - Food Science and Technology, 2020, 117, 108661.	5.2	33
64	Supercritical Carbon Dioxide Extraction of Polyphenols from Pomegranate (Punica granatum L.) Leaves: Chemical Composition, Economic Evaluation and Chemometric Approach. Journal of Food Research, 2012, 1, 282.	0.3	32
65	Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innovative Food Science and Emerging Technologies, 2021, 67, 102549.	5.6	31
66	Subcritical and supercritical technology for the production of second generation bioethanol. Critical Reviews in Biotechnology, 2015, 35, 302-312.	9.0	29
67	Beet Stalks and Leaves (Beta vulgaris L.) Protect Against High-Fat Diet-Induced Oxidative Damage in the Liver in Mice. Nutrients, 2018, 10, 872.	4.1	29
68	Supercritical fluid extraction of polyphenols from lees: overall extraction curve, kinetic data and composition of the extracts. Bioresources and Bioprocessing, 2015, 2, .	4.2	27
69	New proposal for production of bioactive compounds by supercritical technology integrated to a sugarcane biorefinery. Clean Technologies and Environmental Policy, 2014, 16, 1455-1468.	4.1	26
70	Co-precipitation of anthocyanins of the extract obtained from blackberry residues by pressurized antisolvent process. Journal of Supercritical Fluids, 2018, 137, 81-92.	3.2	26
71	Economic evaluation of supercritical fluid and pressurized liquid extraction to obtain phytonutrients from biquinho pepper: Analysis of single and sequential-stage processes. Journal of Supercritical Fluids, 2020, 165, 104935.	3.2	26
72	Mushrooms as a Source of Anti-Inflammatory Agents. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2010, 9, 125-141.	1.1	25

#	Article	IF	CITATIONS
73	Extraction of lignans from Phyllanthus amarus Schum. & Thonn using pressurized liquids and low pressure methods. Separation and Purification Technology, 2016, 158, 204-211.	7.9	25
74	Recovery of sugars and amino acids from brewers' spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors. Food Research International, 2022, 157, 111470.	6.2	25
75	Techno-economic evaluation for recovering phenolic compounds from acai (Euterpe oleracea) by-product by pressurized liquid extraction. Journal of Supercritical Fluids, 2022, 179, 105413.	3.2	23
76	Comprehensive analysis of phenolic compounds from natural products: Integrating sample preparation and analysis. Analytica Chimica Acta, 2021, 1178, 338845.	5.4	22
77	Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chemistry: X, 2022, 14, 100262.	4.3	22
78	Sub-2 μ m fully porous and partially porous (core–shell) stationary phases for reversed phase liquid chromatography. RSC Advances, 2014, 4, 22875-22887.	3.6	21
79	Fast analysis of phenolic terpenes by high-performance liquid chromatography using a fused-core column. Analytical Methods, 2014, 6, 7457-7468.	2.7	20
80	Concentration of bioactive compounds from grape marc using pressurized liquid extraction followed by integrated membrane processes. Separation and Purification Technology, 2020, 250, 117206.	7.9	20
81	Valorization of Residual Biomasses from the Agri-Food Industry by Subcritical Water Hydrolysis Assisted by CO ₂ . Energy & Fuels, 2017, 31, 2838-2846.	5.1	19
82	Differences between organic and conventional leafy green vegetables perceived by university students. British Food Journal, 2019, 121, 1579-1591.	2.9	19
83	Characterization of pomegranate peel extracts obtained using different solvents and their effects on cell cycle and apoptosis in leukemia cells. Food Science and Nutrition, 2020, 8, 5483-5496.	3.4	19
84	Protective effects of beet (<scp><i>Beta vulgaris</i></scp>) leaves extract against oxidative stress in endothelial cells in vitro. Phytotherapy Research, 2020, 34, 1385-1396.	5.8	17
85	Integration of pressurized liquid extraction and in-line solid-phase extraction to simultaneously extract and concentrate phenolic compounds from lemon peel (Citrus limon L.). Food Research International, 2022, 157, 111252.	6.2	17
86	Fast analysis of β-ecdysone in Brazilian ginseng (Pfaffia glomerata) extracts by high-performance liquid chromatography using a fused-core column. Analytical Methods, 2014, 6, 2452-2459.	2.7	15
87	Microbiological Quality of Organic and Conventional Leafy Vegetables. Journal of Food Quality, 2018, 2018, 1-7.	2.6	15
88	Simultaneous extraction and separation of compounds from mate (Ilex paraguariensis) leaves by pressurized liquid extraction coupled with solid-phase extraction and in-line UV detection. Food Chemistry Molecular Sciences, 2021, 2, 100008.	2.1	15
89	Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food Research International, 2022, 158, 111547.	6.2	15
90	Influence of ultrasound irradiation pre-treatment in biohythane generation from the thermophilic anaerobic co-digestion of sugar production residues. Journal of Environmental Chemical Engineering, 2017, 5, 3749-3758.	6.7	13

MAURICIO ROSTAGNO

#	Article	IF	CITATIONS
91	Probiotic fermented milk with high content of polyphenols: Study of viability and bioaccessibility after simulated digestion. International Journal of Dairy Technology, 2021, 74, 170-180.	2.8	13
92	Sustainable development in the Legal Amazon: energy recovery from açaÃ-seeds. Biofuels, Bioproducts and Biorefining, 2021, 15, 1174-1189.	3.7	13
93	Beetroot and leaf extracts present protective effects against prostate cancer cells, inhibiting cell proliferation, migration, and growth signaling pathways. Phytotherapy Research, 2021, 35, 5241-5258.	5.8	12
94	Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods, 2022, 11, 1070.	4.3	12
95	Comparison of different types of stationary phases for the analysis of soy isoflavones by HPLC. Analytical and Bioanalytical Chemistry, 2011, 400, 1251-1261.	3.7	11
96	Phenolic Compounds in Coffee Compared to Other Beverages. , 2015, , 137-142.		11
97	Supercritical fluid extraction of phyllanthin and niranthin from Phyllanthus amarus Schum. & Thonn. Journal of Supercritical Fluids, 2017, 127, 23-32.	3.2	11
98	Anticancer effects of root and beet leaf extracts (<i><scp>Beta vulgaris</scp> L</i> .) in cervical cancer cells (<scp>HeLa</scp>). Phytotherapy Research, 2021, 35, 6191-6203.	5.8	10
99	Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Separation and Purification Technology, 2022, 298, 121640.	7.9	10
100	Distribution patterns of polyphenols and alkaloids in instant coffee, soft and energy drinks, and tea. Czech Journal of Food Sciences, 2013, 31, 483-500.	1.2	9
101	Novel process of hydration, followed by incubation and thermal processing, for high isoflavone bioconversion in soybeans. Food Research International, 2019, 121, 691-696.	6.2	7
102	Characterization and analysis of specific energy consumption in the Brazilian agricultural sector. International Journal of Environmental Science and Technology, 2017, 14, 2077-2092.	3.5	6
103	The study of model systems subjected to sub- and supercritical water hydrolysis for the production of fermentable sugars. Green Chemistry Letters and Reviews, 2015, 8, 16-30.	4.7	5
104	Beet (Beta vulgaris L.) stalk and leaf supplementation changes the glucose homeostasis and inflammatory markers in the liver of mice exposed to a high-fat diet. Food Chemistry Molecular Sciences, 2021, 2, 100018.	2.1	3
105	Ultrasound-Assisted Extraction of Semi-Defatted Unripe Genipap (Genipa americana L.): Selective Conditions for the Recovery of Natural Colorants. Processes, 2021, 9, 1435.	2.8	3
106	Development of Meat and Poultry Products Enriched with n-3 PUFAs and their Functional Role. Current Nutrition and Food Science, 2011, 7, 253-270.	0.6	2
107	Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (<i>Coffea) Tj ETQq1 1 0.78 Processing and Preservation, 2021, 45, e15955.</i>	34314 rgBT 2.0	/Overlock 10 2
108	Organic Beet Leaves and Stalk Juice Attenuates the Glutathione Peroxidase Increase Induced by High-Fat Meal in Dyslipidemic Patients: A Pilot Double-Blind, Randomized, Controlled Trial. Applied Sciences (Switzerland), 2022, 12, 1973.	2.5	2

MAURICIO ROSTAGNO

#	Article	IF	CITATIONS
109	Chapter 8. Simultaneous Determination of Caffeine and Phenolic Compounds in Tea and Coffee. Food and Nutritional Components in Focus, 2012, , 130-153.	0.1	1
110	CHAPTER 11. Integration of Pressurized Fluidâ€based Technologies for Natural Product Processing. RSC Green Chemistry, 2013, , 399-441.	0.1	1
111	Editorial: Exploring the Potential of Natural Products Through Advanced Techniques and Green Solvents. Frontiers in Chemistry, 2020, 8, 627111.	3.6	1
112	Incorporação de compostos da casca da laranja em pães. , 0, , .		1
113	Anti-ovarian cancer potential of phytocompound and extract from South African medicinal plants and their role in the development of chemotherapeutic agents. American Journal of Cancer Research, 2021, 11, 1828-1844.	1.4	1
114	Potential application for antimicrobial and antileukemic therapy of a flavonoid-rich fraction of Camellia sinensis. , 2022, 1, 100042.		1
115	Editorial (Supercritical Fluid Technology in Analytical Chemistry). Current Analytical Chemistry, 2013, 10, 2-2.	1.2	0
116	Fast Analysis of Bioactive Compounds by Reverse Phase Liquid Chromatography. ACS Symposium Series, 2014, , 79-100.	0.5	0
117	Development of Meat and Poultry Products Enriched with n-3 PUFAs and their Functional Role. Current Nutrition and Food Science, 2012, 7, 253-270.	0.6	0
118	Desenvolvimento de pães funcionais com extrato liofilizado da casca de limão Tahiti (Citrus latifolia) Tj ETQqQ	0 0 rgBT	/Oyerlock 10

119 Desenvolvimento de pães funcionais enriquecidos com extrato da casca de jaboticaba (Myrciaria) Tj ETQq1 1 0.784314 rgBT/Overlo

120Recovery and application of high-value resources from foods and food by-products. Food Chemistry:
X, 2022, 13, 100246.4.30