Florence Apparailly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8024744/publications.pdf

Version: 2024-02-01

90 papers 6,662 citations

39 h-index 80 g-index

94 all docs 94 docs citations 94 times ranked 9895 citing authors

#	Article	IF	CITATIONS
1	Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 2003, 102, 3837-3844.	1.4	1,079
2	Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells, 2007, 25, 2025-2032.	3.2	562
3	Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagenâ€induced arthritis. Arthritis and Rheumatism, 2005, 52, 1595-1603.	6.7	344
4	E2F transcription factor-1 regulates oxidative metabolism. Nature Cell Biology, 2011, 13, 1146-1152.	10.3	222
5	microRNA target prediction programs predict many false positives. Genome Research, 2017, 27, 234-245.	5.5	219
6	Short-Term BMP-2 Expression Is Sufficient for In Vivo Osteochondral Differentiation of Mesenchymal Stem Cells. Stem Cells, 2004, 22, 74-85.	3.2	212
7	Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology, 2013, 52, 590-598.	1.9	185
8	A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (<i>NLRP1-</i> associated autoinflammation with arthritis and dyskeratosis). Annals of the Rheumatic Diseases, 2017, 76, 1191-1198.	0.9	181
9	Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Research and Therapy, 2005, 7, R1304.	3.5	178
10	Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis. Arthritis and Rheumatism, 2006, 54, 1867-1877.	6.7	175
11	miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice. PLoS ONE, 2009, 4, e7542.	2.5	172
12	Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Research and Therapy, 2007, 9, R33.	3.5	149
13	Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Frontiers in Immunology, 2019, 10, 1408.	4.8	137
14	Earlier Onset of Syngeneic Tumors in the Presence of Mesenchymal Stem Cells. Transplantation, 2006, 82, 1060-1066.	1.0	122
15	Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nature Reviews Rheumatology, 2016, 12, 211-220.	8.0	118
16	Gene Therapy Platform for Bone Regeneration Using an Exogenously Regulated, AAV-2-Based Gene Expression System. Molecular Therapy, 2004, 9, 587-595.	8.2	114
17	Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis and Rheumatism, 2008, 58, 2356-2367.	6.7	95
18	Immature Dendritic Cells Suppress Collagen-Induced Arthritis by In Vivo Expansion of CD49b+ Regulatory T Cells. Journal of Immunology, 2006, 177, 3806-3813.	0.8	94

#	Article	IF	Citations
19	Animal models for arthritis: innovative tools for prevention and treatment. Annals of the Rheumatic Diseases, 2011, 70, 1357-1362.	0.9	92
20	Immunomodulatory Dendritic Cells Inhibit Th1 Responses and Arthritis via Different Mechanisms. Journal of Immunology, 2007, 179, 1506-1515.	0.8	86
21	Tetracycline-Inducible Interleukin-10 Gene Transfer Mediated by an Adeno-Associated Virus: Application to Experimental Arthritis. Human Gene Therapy, 2002, 13, 1179-1188.	2.7	84
22	Circulating miRNA-125b Is a Potential Biomarker Predicting Response to Rituximab in Rheumatoid Arthritis. Mediators of Inflammation, 2014, 2014, 1-9.	3.0	83
23	Glucocorticoidâ€induced leucine zipper is an endogenous antiinflammatory mediator in arthritis. Arthritis and Rheumatism, 2010, 62, 2651-2661.	6.7	80
24	Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmunity Reviews, 2021, 20, 102758.	5.8	76
25	Tetracycline Transcriptional Silencer Tightly Controls Transgene Expression AfterIn VivoIntramuscular Electrotransfer: Application to Interleukin 10 Therapy in Experimental Arthritis. Human Gene Therapy, 2002, 13, 2161-2172.	2.7	67
26	Delivery of miR-146a to Ly6C ^{high} Monocytes Inhibits Pathogenic Bone Erosion in Inflammatory Arthritis. Theranostics, 2018, 8, 5972-5985.	10.0	64
27	Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis and Rheumatism, 2004, 50, 3354-3364.	6.7	63
28	What do microRNAs mean for rheumatoid arthritis?. Arthritis and Rheumatism, 2012, 64, 11-20.	6.7	63
29	POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genetics in Medicine, 2020, 22, 547-556.	2.4	63
30	High efficiency cell-specific targeting of cytokine activity. Nature Communications, 2014, 5, 3016.	12.8	62
31	In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood, 2010, 116, 3505-3516.	1.4	57
32	Impact of microRNAs on the understanding and treatment of rheumatoid arthritis. Current Opinion in Rheumatology, 2013, 25, 225-233.	4.3	55
33	X-Linked miRNAs Associated with Gender Differences in Rheumatoid Arthritis. International Journal of Molecular Sciences, 2016, 17, 1852.	4.1	55
34	â€~SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Annals of the Rheumatic Diseases, 2021, 80, 714-726.	0.9	51
35	Tetracycline-Inducible Viral Interleukin-10 Intraocular Gene Transfer, Using Adeno-Associated Virus in Experimental Autoimmune Uveoretinitis. Human Gene Therapy, 2005, 16, 1037-1046.	2.7	49
36	Paradoxical effects of tissue inhibitor of metalloproteinases 1 gene transfer in collagen-induced arthritis. Arthritis and Rheumatism, 2001, 44, 1444-1454.	6.7	47

#	Article	IF	CITATIONS
37	Micro-CT combined with bioluminescence imaging: A dynamic approach to detect early tumor–bone interaction in a tumor osteolysis murine model. Bone, 2007, 40, 1032-1040.	2.9	46
38	Transcriptomic Network Support Distinct Roles of Classical and Non-Classical Monocytes in Human. International Reviews of Immunology, 2014, 33, 470-489.	3.3	45
39	siRNA-based therapeutic approaches for rheumatic diseases. Nature Reviews Rheumatology, 2013, 9, 56-62.	8.0	43
40	PSMB10, the last immunoproteasome gene missing for PRAAS. Journal of Allergy and Clinical Immunology, 2020, 145, 1015-1017.e6.	2.9	42
41	MicroRNAs: Key Regulators to Understand Osteoclast Differentiation?. Frontiers in Immunology, 2019, 10, 375.	4.8	41
42	Antitumoral Activity and Osteogenic Potential of Mesenchymal Stem Cells Expressing the Urokinase-Type Plasminogen Antagonist Amino-Terminal Fragment in a Murine Model of Osteolytic Tumor. Stem Cells, 2008, 26, 2981-2990.	3.2	40
43	MicroRNAs as new player in rheumatoid arthritis. Joint Bone Spine, 2011, 78, 17-22.	1.6	39
44	Nicotinamide phosphoribosyltransferase/visfatin expression by inflammatory monocytes mediates arthritis pathogenesis. Annals of the Rheumatic Diseases, 2013, 72, 1717-1724.	0.9	38
45	Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. ELife, 2020, 9, .	6.0	38
46	Systemic viral interleukin-10 gene delivery prevents cartilage invasion by human rheumatoid synovial tissue engrafted in SCID mice. Arthritis and Rheumatism, 1999, 42, 678-685.	6.7	37
47	From Stem Cells to Bone: Phenotype Acquisition, Stabilization, and Tissue Engineering in Animal Models. ILAR Journal, 2010, 51, 42-61.	1.8	36
48	Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacologica Sinica, 2009, 30, 1369-1384.	6.1	35
49	PLGA microspheres encapsulating siRNA anti-TNFalpha: Efficient RNAi-mediated treatment of arthritic joints. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 457-464.	4.3	35
50	MicroRNA Profiling of B Cell Subsets from Systemic Lupus Erythematosus Patients Reveals Promising Novel Biomarkers. International Journal of Molecular Sciences, 2015, 16, 16953-16965.	4.1	33
51	RNA interference-based gene therapy for successful treatment of rheumatoid arthritis. Expert Opinion on Biological Therapy, 2009, 9, 535-538.	3.1	32
52	Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chemical Science, 2018, 9, 8046-8055.	7.4	32
53	Adenoâ€associated virus type 5–mediated intraarticular administration of tumor necrosis factor small interfering RNA improves collagenâ€induced arthritis. Arthritis and Rheumatism, 2010, 62, 765-770.	6.7	30
54	Beneficial Effect of Alcohol Withdrawal on Gut Permeability and Microbial Translocation in Patients with Alcohol Use Disorder. Alcoholism: Clinical and Experimental Research, 2018, 42, 32-40.	2.4	29

#	Article	IF	CITATIONS
55	Transient down-regulation of cbfa1/Runx2 by RNA interference in murine C3H10T1/2 mesenchymal stromal cells delays in vitro and in vivo osteogenesis, but does not overtly affect chondrogenesis. Experimental Cell Research, 2008, 314, 1495-1506.	2.6	28
56	Cytosolic phospholipase $A2\hat{l}\pm$ gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis. Arthritis and Rheumatism, 2011, 63, 681-690.	6.7	25
57	Mesenchymal stem cells and rheumatoid arthritis. Joint Bone Spine, 2003, 70, 483-485.	1.6	24
58	MicroRNAs: Fine Tuners of Monocyte Heterogeneity. Frontiers in Immunology, 2019, 10, 2145.	4.8	23
59	miR-125b and miR-532-3p predict the efficiency of rituximab-mediated lymphodepletion in chronic lymphocytic leukemia patients. A French Innovative Leukemia Organization study. Haematologica, 2017, 102, 746-754.	3.5	22
60	miRNAs and rheumatoid arthritis - promising novel biomarkers. Swiss Medical Weekly, 2011, 141, w13175.	1.6	22
61	Inhibition of Inflammation and Bone Erosion by RNA Interference–Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 2536-2546.	5.6	21
62	Effects of alcohol withdrawal on monocyte subset defects in chronic alcohol users. Journal of Leukocyte Biology, 2016, 100, 1191-1199.	3.3	21
63	Adeno-Associated Virus–Mediated IL-10 Gene Transfer Suppresses Lacrimal Gland Immunopathology in a Rabbit Model of Autoimmune Dacryoadenitis. , 2010, 51, 5137.		19
64	Synovial-Fluid miRNA Signature for Diagnosis of Juvenile Idiopathic Arthritis. Cells, 2019, 8, 1521.	4.1	18
65	Synovial macrophages: from ordinary eaters to extraordinary multitaskers. Trends in Immunology, 2021, 42, 368-371.	6.8	17
66	Immunological evaluation of cytokine and anticytokine immunotherapy in vivo: what have we learnt?. Annals of the Rheumatic Diseases, 1999, 58, 136-141.	0.9	16
67	Prospects for gene therapy in inflammatory arthritis. Best Practice and Research in Clinical Rheumatology, 2010, 24, 541-552.	3.3	15
68	Gene Therapy for Rheumatoid Arthritis. BioDrugs, 2011, 25, 381-391.	4.6	15
69	LARP7 variants and further delineation of the Alazami syndrome phenotypic spectrum among primordial dwarfisms: 2 sisters. European Journal of Medical Genetics, 2019, 62, 161-166.	1.3	14
70	Differential Accumulation and Activation of Monocyte and Dendritic Cell Subsets in Inflamed Synovial Fluid Discriminates Between Juvenile Idiopathic Arthritis and Septic Arthritis. Frontiers in Immunology, 2020, 11, 1716.	4.8	13
71	New insights into macrophage heterogeneity in rheumatoid arthritis. Joint Bone Spine, 2021, 88, 105091.	1.6	13
72	Role of sialic acid residues in the in vitro superactivity of human choriogonadotropin (hCG) in rat Leydig cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 559-565.	4.1	9

#	Article	IF	CITATIONS
73	Looking for microRNA polymorphisms as new rheumatoid arthritis risk loci?. Joint Bone Spine, 2010, 77, 377-379.	1.6	9
74	<i>TMEM187-IRAK1</i> Polymorphisms Associated with Rheumatoid Arthritis Susceptibility in Tunisian and French Female Populations: Influence of Geographic Origin. Journal of Immunology Research, 2017, 2017, 1-12.	2.2	9
75	MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophysiological mechanisms?. Autoimmunity Reviews, 2019, 18, 796-804.	5. 8	9
76	Quantitative imaging of cartilage and bone for functional assessment of gene therapy approaches in experimental arthritis. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 387-394.	2.7	8
77	Arthritis sensory and motor scale: predicting functional deficits from the clinical score in collagen-induced arthritis. Arthritis Research and Therapy, 2019, 21, 264.	3.5	7
78	RNAi in arthritis: prospects of a future antisense therapy in inflammation. Current Opinion in Molecular Therapeutics, 2007, 9, 483-9.	2.8	6
79	Cationic liposome formulations for RNAi-based validation of therapeutic targets in rheumatoid arthritis. Current Opinion in Molecular Therapeutics, 2010, 12, 325-30.	2.8	6
80	Persistent Luminescence Nanoparticles for Bioimaging. Advances in Intelligent and Soft Computing, 2012, , 37-53.	0.2	4
81	CRISPR-Cas9: A revolution in genome editing in rheumatic diseases. Joint Bone Spine, 2017, 84, 1-4.	1.6	4
82	Therapeutic mesenchymal stem or stromal cells in rheumatic diseases: rationale, clinical data and perspectives. Clinical Investigation, 2011, 1, 1269-1277.	0.0	2
83	Breaking Prometheus's curse for cartilage regeneration. Nature Reviews Rheumatology, 2017, 13, 516-518.	8.0	2
84	Dysregulation of microRNA expression in the skin during cutaneous adverse drug reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3279-3283.	5.7	2
85	TNFR1-d2 carrying the p.(Thr79Met) pathogenic variant is a potential novel actor of TNFî±/TNFR1 signalling regulation in the pathophysiology of TRAPS. Scientific Reports, 2021, 11, 4172.	3.3	1
86	87. Efficient Delivery of Small Interfering RNA Targeting Pro_Inflammatory Cytokines in Experimental Arthritis. Molecular Therapy, 2006, 13, S36.	8.2	0
87	1067. Amelioration of Arthritis after Local Delivery of an Adeno-Associated Virus Type 6 Expressing a TNF-Blocking Agent under a Disease-Inducible Promoter. Molecular Therapy, 2006, 13, S409.	8.2	0
88	RNAi-mediated gene silencing in inflammatory monocytes for efficient immuno-intervention in experimental arthritis. Annals of the Rheumatic Diseases, 2012, 71, A75.1-A75.	0.9	0
89	07.16â \in Nlrp1 mutations cause autoinflammatory diseases in human: implication of the nlrp1 inflammasome?. , 2017, , .		0
90	Gene therapy for arthritis. , 2010, , 1-18.		0