
Nicholas Rhind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8023112/publications.pdf Version: 2024-02-01

NICHOLAS PHIND

#	Article	IF	CITATIONS
1	f = m*a: A Framework for Investigating the Regulation of Replication Timing. Genes, 2022, 13, 249.	1.0	1
2	Mapping replication forks, one replicon at a time. Molecular Cell, 2022, 82, 1246-1248.	4.5	0
3	The capacity of origins to load MCM establishes replication timing patterns. PLoS Genetics, 2021, 17, e1009467.	1.5	22
4	Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Molecular Cell, 2021, 81, 2975-2988.e6.	4.5	57
5	Cell-size control. Current Biology, 2021, 31, R1414-R1420.	1.8	16
6	The fission yeast S-phase cyclin Cig2 can drive mitosis. Genetics, 2021, 217, 1-12.	1.2	2
7	Fission yeast cells grow approximately exponentially. Cell Cycle, 2019, 18, 869-879.	1.3	10
8	Cell Size Control via an Unstable Accumulating Activator and the Phenomenon of Excess Mitotic Delay. BioEssays, 2018, 40, 1700184.	1.2	7
9	Transcriptome-wide Interrogation of the Functional Intronome by Spliceosome Profiling. Cell, 2018, 173, 1031-1044.e13.	13.5	26
10	An estradiolâ€inducible promoter enables fast, graduated control of gene expression in fission yeast. Yeast, 2017, 34, 323-334.	0.8	20
11	Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast. Current Biology, 2017, 27, 1491-1497.e4.	1.8	84
12	Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Developmental Cell, 2017, 41, 638-651.e5.	3.1	263
13	Global increase in replication fork speed during a p57 ^{KIP2} -regulated erythroid cell fate switch. Science Advances, 2017, 3, e1700298.	4.7	44
14	The Intra-S Checkpoint Responses to DNA Damage. Genes, 2017, 8, 74.	1.0	87
15	Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA. PLoS Genetics, 2017, 13, e1006958.	1.5	43
16	How and why multiple MCMs are loaded at origins of DNA replication. BioEssays, 2016, 38, 613-617.	1.2	26
17	Discovery of genes involved in mitosis, cell division, cell wall integrity and chromosome segregation through construction of <i>Schizosaccharomyces pombe</i> deletion strains. Yeast, 2016, 33, 507-517.	0.8	5
18	ldentification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3676-E3685.	3.3	13

NICHOLAS RHIND

#	Article	IF	CITATIONS
19	Global Increase in Replication Fork Speed during a p57KIP2-Regulated Erythroid Cell Fate Switch. Blood, 2016, 128, 698-698.	0.6	0
20	Replication timing is regulated by the number of MCMs loaded at origins. Genome Research, 2015, 25, 1886-1892.	2.4	80
21	Incorporation of Thymidine Analogs for Studying Replication Kinetics in Fission Yeast. Methods in Molecular Biology, 2015, 1300, 99-104.	0.4	1
22	The three most important things about origins: location, location, location. Molecular Systems Biology, 2014, 10, 723.	3.2	3
23	Checkpoint regulation of replication forks: global or local?. Biochemical Society Transactions, 2013, 41, 1701-1705.	1.6	15
24	DNA Replication Timing. Cold Spring Harbor Perspectives in Biology, 2013, 5, a010132-a010132.	2.3	278
25	Signaling Pathways that Regulate Cell Division. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005942-a005942.	2.3	129
26	Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biology, 2012, 13, R27.	13.9	85
27	Replication timing and its emergence from stochastic processes. Trends in Genetics, 2012, 28, 374-381.	2.9	87
28	Comparative Functional Genomics of the Fission Yeasts. Science, 2011, 332, 930-936.	6.0	458
29	Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29, 644-652.	9.4	17,264
30	Evolutionary divergence of intrinsic and <i>trans</i> -regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Research, 2011, 21, 1851-1862.	2.4	74
31	Mre11 Nuclease Activity and Ctp1 Regulate Chk1 Activation by Rad3 ^{ATR} and Tel1 ^{ATM} Checkpoint Kinases at Double-Strand Breaks. Molecular and Cellular Biology, 2011, 31, 573-583.	1.1	38
32	Studying G2 DNA Damage Checkpoints Using the Fission Yeast Schizosaccharomyces pombe. Methods in Molecular Biology, 2011, 782, 1-12.	0.4	10
33	Studying S-Phase DNA Damage Checkpoints Using the Fission Yeast Schizosaccharomyces pombe. Methods in Molecular Biology, 2011, 782, 13-21.	0.4	4
34	Modeling genomeâ€wide replication kinetics reveals a mechanism for regulation of replication timing. Molecular Systems Biology, 2010, 6, 404.	3.2	113
35	Reconciling stochastic origin firing with defined replication timing. Chromosome Research, 2010, 18, 35-43.	1.0	69
36	The Fission Yeast Rad32(Mre11)–Rad50–Nbs1 Complex Acts Both Upstream and Downstream of Checkpoint Signaling in the S-Phase DNA Damage Checkpoint. Genetics, 2010, 184, 887-897.	1.2	5

NICHOLAS RHIND

#	Article	IF	CITATIONS
37	Mus81, Rhp51(Rad51), and Rqh1 Form an Epistatic Pathway Required for the S-Phase DNA Damage Checkpoint. Molecular Biology of the Cell, 2009, 20, 819-833.	0.9	37
38	The Role of MRN in the S-Phase DNA Damage Checkpoint Is Independent of Its Ctp1-dependent Roles in Double-Strand Break Repair and Checkpoint Signaling. Molecular Biology of the Cell, 2009, 20, 2096-2107.	0.9	12
39	Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Division, 2009, 4, 13.	1.1	66
40	Changing of the Guard: How ATM Hands Off DNA Double-Strand Break Signaling to ATR. Molecular Cell, 2009, 33, 672-674.	4.5	10
41	Incorporation of Thymidine Analogs for Studying Replication Kinetics in Fission Yeast. Methods in Molecular Biology, 2009, 521, 509-515.	0.4	6
42	The Role of Specific Checkpoint-Induced S-Phase Transcripts in Resistance to Replicative Stress. PLoS ONE, 2009, 4, e6944.	1.1	9
43	The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency. Molecular Biology of the Cell, 2008, 19, 5550-5558.	0.9	81
44	The DNA Replication Checkpoint Directly Regulates MBF-Dependent G ₁ /S Transcription. Molecular and Cellular Biology, 2008, 28, 5977-5985.	1.1	47
45	An intrinsic checkpoint model for regulation of replication origins. Cell Cycle, 2008, 7, 2619-2620.	1.3	5
46	DNA Replication Origins Fire Stochastically in Fission Yeast. Molecular Biology of the Cell, 2006, 17, 308-316.	0.9	176
47	Basic methods for fission yeast. Yeast, 2006, 23, 173-183.	0.8	457
48	DNA replication timing: random thoughts about origin firing. Nature Cell Biology, 2006, 8, 1313-1316.	4.6	116
49	Cdc2 Tyrosine Phosphorylation is Not Required for the S-Phase DNA Damage Checkpoint in Fission Yeast. Cell Cycle, 2006, 5, 2495-2500.	1.3	14
50	In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods, 2004, 33, 213-219.	1.9	59
51	A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes and Development, 2004, 18, 2359-2367.	2.7	128
52	The Fission Yeast Rad32 (Mre11)-Rad50-Nbs1 Complex Is Required for the S-Phase DNA Damage Checkpoint. Molecular and Cellular Biology, 2003, 23, 6564-6573.	1.1	70
53	Roles of the Mitotic Inhibitors Wee1 and Mik1 in the G 2 DNA Damage and Replication Checkpoints. Molecular and Cellular Biology, 2001, 21, 1499-1508.	1.1	73
54	Checkpoints: It takes more than time to heal some wounds. Current Biology, 2000, 10, R908-R911.	1.8	59

NICHOLAS RHIND

#	Article	IF	CITATIONS
55	DNA Damage Checkpoint Control of Mitosis in Fission Yeast. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 353-360.	2.0	3
56	Mitotic DNA damage and replication checkpoints in yeast. Current Opinion in Cell Biology, 1998, 10, 749-758.	2.6	159
57	Tyrosine Phosphorylation of Cdc2 Is Required for the Replication Checkpoint in <i>Schizosaccharomyces pombe</i> . Molecular and Cellular Biology, 1998, 18, 3782-3787.	1.1	109
58	The Schizosaccharomyces pombe S-Phase Checkpoint Differentiates Between Different Types of DNA Damage. Genetics, 1998, 149, 1729-1737.	1.2	63
59	Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase. Science, 1997, 277, 1495-1497.	6.0	515
60	xo1-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell, 1995, 80, 71-82.	13.5	94