Jane Glazebrook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 2005, 43, 205-227.	3.5	3,622
2	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296, 92-100.	6.0	2,866
3	The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 1997, 88, 57-63.	13.5	1,408
4	A High-Throughput Arabidopsis Reverse Genetics System. Plant Cell, 2002, 14, 2985-2994.	3.1	873
5	Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses[W]. Plant Cell, 2002, 14, 559-574.	3.1	849
6	Priming in Systemic Plant Immunity. Science, 2009, 324, 89-91.	6.0	749
7	Genes controlling expression of defense responses in Arabidopsis — 2001 status. Current Opinion in Plant Biology, 2001, 4, 301-308.	3.5	644
8	Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae Â[W]. Plant Cell, 2003, 15, 317-330.	3.1	641
9	Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13583-13588.	3.3	544
10	Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening. Genetics, 1996, 143, 973-982.	1.2	520
11	Network Properties of Robust Immunity in Plants. PLoS Genetics, 2009, 5, e1000772.	1.5	489
12	The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2004, 17, 895-908.	1.4	483
13	Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant Journal, 2003, 34, 217-228.	2.8	466
14	Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 2008, 27, 2214-2221.	3.5	445
15	Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8955-8959.	3.3	425
16	PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis. Plant Cell, 1998, 10, 1021-1030.	3.1	397
17	Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis. Plant Cell, 2007, 19, 2039-2052.	3.1	339
18	Phytoalexin-Deficient Mutants of Arabidopsis Reveal That <i>PAD4</i> Encodes a Regulatory Factor and That Four <i>PAD</i> Genes Contribute to Downy Mildew Resistance. Genetics, 1997, 146, 381-392.	1.2	332

#	Article	IF	CITATIONS
19	Identification of PAD2 as a Î ³ -glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant Journal, 2006, 49, 159-172.	2.8	329
20	Arabidopsis PAD3, a Gene Required for Camalexin Biosynthesis, Encodes a Putative Cytochrome P450 Monooxygenase. Plant Cell, 1999, 11, 2419-2428.	3.1	322
21	Interplay between MAMPâ€triggered and SAâ€mediated defense responses. Plant Journal, 2008, 53, 763-775.	2.8	318
22	A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5638-5643.	3.3	317
23	A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell, 1989, 56, 661-672.	13.5	295
24	CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant Journal, 2011, 67, 1029-1041.	2.8	244
25	Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens, 2009, 5, e1000301.	2.1	242
26	A network of rice genes associated with stress response and seed development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4945-4950.	3.3	228
27	Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant Journal, 2003, 33, 733-742.	2.8	215
28	Characterization of the Early Response of Arabidopsis to Alternaria brassicicola Infection Using Expression Profiling. Plant Physiology, 2003, 132, 606-617.	2.3	215
29	Dual Regulation of Gene Expression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Arabidopsis thaliana. PLoS Genetics, 2013, 9, e1004015.	1.5	208
30	Genes controlling expression of defense responses in Arabidopsis. Current Opinion in Plant Biology, 1999, 2, 280-286.	3.5	191
31	Arabidopsis thaliana EDS4 Contributes to Salicylic Acid (SA)-Dependent Expression of Defense Responses: Evidence for Inhibition of Jasmonic Acid Signaling by SA. Molecular Plant-Microbe Interactions, 2000, 13, 503-511.	1.4	186
32	Arabidopsis <i>PECTIN METHYLESTERASEs</i> Contribute to Immunity against <i>Pseudomonas syringae</i> . Plant Physiology, 2014, 164, 1093-1107.	2.3	166
33	Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in <i>Arabidopsis thaliana</i> . Plant Cell, 2016, 28, 537-556.	3.1	144
34	USE OF ARABIDOPSIS FOR GENETIC DISSECTION OF PLANT DEFENSE RESPONSES. Annual Review of Genetics, 1997, 31, 547-569.	3.2	136
35	Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance. Plant Physiology, 2004, 135, 1129-1144.	2.3	128
36	Activation of the <i>Arabidopsis thaliana</i> Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 2012, 25, 471-480.	1.4	123

#	Article	IF	CITATIONS
37	[19] Genetic techniques in Rhizobium meliloti. Methods in Enzymology, 1991, 204, 398-418.	0.4	122
38	Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant Journal, 2001, 26, 395-407.	2.8	113
39	Network Modeling Reveals Prevalent Negative Regulatory Relationships between Signaling Sectors in Arabidopsis Immune Signaling. PLoS Pathogens, 2010, 6, e1001011.	2.1	110
40	The <scp>mRNA</scp> decay factor <scp>PAT</scp> 1 functions in a pathway including <scp>MAP</scp> kinase 4 and immune receptor <scp>SUMM</scp> 2. EMBO Journal, 2015, 34, 593-608.	3.5	100
41	An efficient <i>Agrobacterium</i> â€mediated transient transformation of Arabidopsis. Plant Journal, 2012, 69, 713-719.	2.8	95
42	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	1.6	94
43	Physical association of patternâ€triggered immunity (PTI) and effectorâ€triggered immunity (ETI) immune receptors in Arabidopsis. Molecular Plant Pathology, 2011, 12, 702-708.	2.0	91
44	The CALMODULIN-BINDING PROTEIN60 Family Includes Both Negative and Positive Regulators of Plant Immunity. Plant Physiology, 2013, 163, 1741-1751.	2.3	91
45	Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydrate Research, 1990, 198, 305-312.	1.1	88
46	Ancient origins of nitric oxide signaling in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14206-14207.	3.3	77
47	A plant effectorâ€triggered immunity signaling sector is inhibited by patternâ€triggered immunity. EMBO Journal, 2017, 36, 2758-2769.	3.5	69
48	The Genetic Network Controlling the <i>Arabidopsis</i> Transcriptional Response to <i>Pseudomonas syringae</i> pv. <i>maculicola</i> : Roles of Major Regulators and the Phytotoxin Coronatine. Molecular Plant-Microbe Interactions, 2008, 21, 1408-1420.	1.4	64
49	WRKY70 prevents axenic activation of plant immunity by direct repression of <i>SARD1</i> . New Phytologist, 2018, 217, 700-712.	3.5	60
50	Endosome-Associated CRT1 Functions Early in <i>Resistance</i> Gene–Mediated Defense Signaling in <i>Arabidopsis</i> and Tobacco. Plant Cell, 2010, 22, 918-936.	3.1	55
51	Metabolite Profiling of <i>Arabidopsis</i> Inoculated with <i>Alternaria brassicicola</i> Reveals That Ascorbate Reduces Disease Severity. Molecular Plant-Microbe Interactions, 2012, 25, 1628-1638.	1.4	54
52	Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes. PLoS ONE, 2013, 8, e58992.	1.1	54
53	A high-performance, small-scale microarray for expression profiling of many samples in Arabidopsis-pathogen studies. Plant Journal, 2007, 49, 565-577.	2.8	51
54	The receptorâ€like cytoplasmic kinase <scp>PCRK</scp> 1 contributes to patternâ€triggered immunity against <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . New Phytologist, 2015, 207, 78-90.	3.5	50

#	Article	IF	CITATIONS
55	Reassess the <i>t</i> Test: Interact with All Your Data via ANOVA. Plant Cell, 2015, 27, 2088-2094.	3.1	48
56	A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1573-1583.	1.4	45
57	Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biology, 2012, 12, 216.	1.6	38
58	PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis. Plant Cell, 1998, 10, 1021.	3.1	35
59	The interplay between MAMP and SA signaling. Plant Signaling and Behavior, 2008, 3, 359-361.	1.2	33
60	MPK11—a fourth elicitor-responsive mitogen-activated protein kinase in Arabidopsis thaliana. Plant Signaling and Behavior, 2012, 7, 1203-1205.	1.2	32
61	Putative Serine Protease Effectors of <i>Clavibacter michiganensis</i> Induce a Hypersensitive Response in the Apoplast of <i>Nicotiana</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 1216-1226.	1.4	32
62	Different Modes of Negative Regulation of Plant Immunity by Calmodulin-Related Genes. Plant Physiology, 2018, 176, 3046-3061.	2.3	31
63	Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1. PLoS ONE, 2013, 8, e60769.	1.1	30
64	Setting Up Arabidopsis Crosses. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4623-pdb.prot4623.	0.2	26
65	Quick Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5179-pdb.prot5179.	0.2	22
66	Plant biotic interactions: from conflict to collaboration. Plant Journal, 2018, 93, 589-591.	2.8	22
67	Genetic analyses of Rhizobium meliloti exopolysaccharides. International Journal of Biological Macromolecules, 1990, 12, 67-70.	3.6	21
68	Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10842-10847.	3.3	19
69	<i>Rhizobium meliloti</i> exopolysaccharides: genetic analyses and symbiotic importance. Biochemical Society Transactions, 1991, 19, 636-644.	1.6	17
70	Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle. Plant Molecular Biology, 2003, 53, 273-279.	2.0	17
71	Genetic Analysis of Arabidopsis Mutants. Cold Spring Harbor Protocols, 2008, 2008, pdb.top35.	0.2	16
72	Comparative Genomic Analyses of <i>Clavibacter michiganensis</i> subsp. <i>insidiosus</i> and Pathogenicity on <i>Medicago truncatula</i> . Phytopathology, 2018, 108, 172-185.	1.1	15

#	Article	IF	CITATIONS
73	Overview of mRNA Expression Profiling Using DNA Microarrays. Current Protocols in Molecular Biology, 2009, 85, Unit 22.4.	2.9	14
74	Measuring Pectin Properties to Track Cell Wall Alterations During Plant–Pathogen Interactions. Methods in Molecular Biology, 2019, 1991, 55-60.	0.4	14
75	Genetic Mapping of Symbiotic Loci on theRhizobium melilotiChromosome. Molecular Plant-Microbe Interactions, 1992, 5, 223.	1.4	14
76	Identification of Components in Disease-Resistance Signaling in <i>Arabidopsis</i> by Map-Based Cloning. , 2007, 354, 69-78.		11
77	Dellaporta Miniprep for Plant DNA Isolation. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5178.	0.2	9
78	Letter to the Editor: DNA Purification-Free PCR from Plant Tissues. Plant and Cell Physiology, 2021, 62, 1503-1505.	1.5	9
79	Fixation, Embedding, and Sectioning of Plant Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4941.	0.2	8
80	Pattern Discovery in Expression Profiling Data. Current Protocols in Molecular Biology, 2009, 85, Unit 22.5.	2.9	8
81	Transmission Electron Microscopy (TEM) Freeze Substitution of Plant Tissues. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot4959.	0.2	7
82	Cyclohexane Diamine Tetraacetic Acid (CDTA) Extraction of Plant Cell Wall Pectin. Bio-protocol, 2014, 4, .	0.2	5
83	Arabidopsis PAD3, a Gene Required for Camalexin Biosynthesis, Encodes a Putative Cytochrome P450 Monooxygenase. Plant Cell, 1999, 11, 2419.	3.1	3
84	Overview of m RNA Expression Profiling Using Microarrays. Current Protocols in Molecular Biology, 2004, 67, Unit 22.4.	2.9	3
85	Use of Microarray Analysis to Dissect the Plant Defense Response. , 2007, 354, 121-130.		3
86	Functional characterization of PCRK1, a putative protein kinase with a role in immunity. Plant Signaling and Behavior, 2015, 10, e1063759.	1.2	3
87	Identification of differentially expressed genes between developing seeds of different soybean cultivars. Genomics Data, 2015, 6, 92-98.	1.3	3
88	Phenotypic Analysis of <i>Arabidopsis</i> Mutants: Bacterial Pathogens. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot4983.	0.2	2
89	Pattern Discovery in Expression Profiling Data. Current Protocols in Molecular Biology, 2005, 69, Unit 22.5.	2.9	1
90	Immunohistochemistry on Sections of Plant Tissues Using Enzyme-Coupled Avidin-Biotin Complex. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4945-pdb.prot4945.	0.2	1

#	Article	IF	CITATIONS
91	Arabidopsis defense response against Pseudomonas syringae - Effects of major regulatory genes and the impact of coronatine. , 2009, , .		0
92	Genetic Analyses Suggesting Bacterial-Plant Signalling During Nodulation. NATO ASI Series Series H, Cell Biology, 1989, , 329-336.	0.5	0