
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and accurate gene regulatory network inference by normalized least squares regression. Bioinformatics, 2022, 38, 2263-2268.	4.1	6
2	Autocrine signaling can explain the emergence of Allee effects in cancer cell populations. PLoS Computational Biology, 2022, 18, e1009844.	3.2	6
3	MYCMI-7: A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. Cancer Research Communications, 2022, 2, 182-201.	1.7	6
4	Real-time evaluation of glioblastoma growth in patient-specific zebrafish xenografts. Neuro-Oncology, 2022, 24, 726-738.	1.2	19
5	Inferring the experimental design for accurate gene regulatory network inference. Bioinformatics, 2021, 37, 3553-3559.	4.1	3
6	Single-cell RNAseq and longitudinal proteomic analysis of a novel semi-spontaneous urothelial cancer model reveals tumor cell heterogeneity and pretumoral urine protein alterations. PLoS ONE, 2021, 16, e0253178.	2.5	4
7	NF1 regulates mesenchymal glioblastoma plasticity and aggressiveness through the AP-1 transcription factor FOSL1. ELife, 2021, 10, .	6.0	41
8	Modeling glioblastoma heterogeneity as a dynamic network of cell states. Molecular Systems Biology, 2021, 17, e10105.	7.2	19
9	Comparative epigenetic analysis of tumour initiating cells and syngeneic EPSC-derived neural stem cells in glioblastoma. Nature Communications, 2021, 12, 6130.	12.8	14
10	p53-Mediated Radiosensitization of 177Lu-DOTATATE in Neuroblastoma Tumor Spheroids. Biomolecules, 2021, 11, 1695.	4.0	4
11	Astrocytes enhance glioblastoma growth. Glia, 2020, 68, 316-327.	4.9	47
12	Integrative discovery of treatments for high-risk neuroblastoma. Nature Communications, 2020, 11, 71.	12.8	42
13	HCN Channel Activity Balances Quiescence and Proliferation in Neural Stem Cells and Is a Selective Target for Neuroprotection During Cancer Treatment. Molecular Cancer Research, 2020, 18, 1522-1533.	3.4	6
14	A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma. Cell Reports, 2020, 32, 107897.	6.4	41
15	Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data. Npj Systems Biology and Applications, 2020, 6, 37.	3.0	12
16	Monotherapy efficacy of blood–brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma. Brain Communications, 2020, 2, fcaa002.	3.3	28
17	Growth-Inhibitory Activity of Bone Morphogenetic Protein 4 in Human Glioblastoma Cell Lines Is Heterogeneous and Dependent on Reduced SOX2 Expression. Molecular Cancer Research, 2020, 18, 981-991.	3.4	8
18	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. OncoImmunology, 2019, 8, e1655360.	4.6	76

#	Article	IF	CITATIONS
19	Integrin α10, a Novel Therapeutic Target in Glioblastoma, Regulates Cell Migration, Proliferation, and Survival. Cancers, 2019, 11, 587.	3.7	32
20	Batch-normalization of cerebellar and medulloblastoma gene expression datasets utilizing empirically defined negative control genes. Bioinformatics, 2019, 35, 3357-3364.	4.1	34
21	BET and Aurora Kinase A inhibitors synergize against MYCN-positive human glioblastoma cells. Cell Death and Disease, 2019, 10, 881.	6.3	26
22	LGR5 promotes tumorigenicity and invasion of glioblastoma stemâ€like cells and is a potential therapeutic target for a subset of glioblastoma patients. Journal of Pathology, 2019, 247, 228-240.	4.5	19
23	Increasing the accuracy of glioblastoma subtypes: Factoring in the tumor's cell of origin. Molecular and Cellular Oncology, 2019, 6, 1302907.	0.7	1
24	Primary glioblastoma cells for precision medicine: a quantitative portrait of genomic (in)stability during the first 30 passages. Neuro-Oncology, 2018, 20, 1080-1091.	1.2	22
25	Image-Based Detection of Patient-Specific Drug-Induced Cell-Cycle Effects in Glioblastoma. SLAS Discovery, 2018, 23, 1030-1039.	2.7	0
26	Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses. Cancer Research, 2017, 77, 1741-1752.	0.9	21
27	Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin. Cell Reports, 2017, 18, 977-990.	6.4	46
28	Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks. Methodology and Computing in Applied Probability, 2017, 19, 1089-1105.	1.2	1
29	Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression. Molecular Cancer Research, 2017, 15, 998-1011.	3.4	30
30	FC1000: normalized gene expression changes of systematically perturbed human cells. Statistical Applications in Genetics and Molecular Biology, 2017, 16, 217-242.	0.6	3
31	Safe and Effective Treatment of Experimental Neuroblastoma and Glioblastoma Using Systemically Delivered Triple MicroRNA-Detargeted Oncolytic Semliki Forest Virus. Clinical Cancer Research, 2017, 23, 1519-1530.	7.0	43
32	c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas. Oncotarget, 2017, 8, 6940-6954.	1.8	21
33	High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer, 2016, 16, 683.	2.6	12
34	Travelling wave analysis of a mathematical model of glioblastoma growth. Mathematical Biosciences, 2016, 276, 75-81.	1.9	26
35	ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells. Scientific Reports, 2016, 6, 25956.	3.3	45
36	Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma. EBioMedicine, 2016, 12, 72-85.	6.1	21

#	Article	IF	CITATIONS
37	Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nature Communications, 2016, 7, 12050.	12.8	146
38	Origin of the U87MG glioma cell line: Good news and bad news. Science Translational Medicine, 2016, 8, 354re3.	12.4	313
39	Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Reports, 2016, 14, 380-389.	6.4	200
40	Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget, 2016, 7, 73200-73215.	1.8	16
41	Graph Centrality Based Prediction of Cancer Genes. Springer Proceedings in Mathematics and Statistics, 2016, , 275-311.	0.2	0
42	The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes. EBioMedicine, 2015, 2, 1351-1363.	6.1	228
43	Avoiding pitfalls in L ₁ -regularised inference of gene networks. Molecular BioSystems, 2015, 11, 287-296.	2.9	16
44	Efficient exploration of pan-cancer networks by generalized covariance selection and interactive web content. Nucleic Acids Research, 2015, 43, e98-e98.	14.5	16
45	Identification of Biomarkers and Signatures in Protein Data. , 2015, , .		0
46	High levels of WNT-5A in human glioma correlate with increased presence of tumor-associated microglia/monocytes. Experimental Cell Research, 2015, 339, 280-288.	2.6	28
47	Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nature Communications, 2015, 6, 7213.	12.8	101
48	Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells. Oncotarget, 2015, 6, 23647-23661.	1.8	31
49	Functional association networks as priors for gene regulatory network inference. Bioinformatics, 2014, 30, i130-i138.	4.1	39
50	Bridging the gaps in systems biology. Molecular Genetics and Genomics, 2014, 289, 727-734.	2.1	38
51	Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells. PLoS ONE, 2014, 9, e115698.	2.5	23
52	Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions. Neuro-Oncology, 2013, 15, 1469-1478.	1.2	19
53	The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120.	21.4	6,265
54	Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening. PLoS ONE, 2013, 8, e68598.	2.5	6

#	Article	IF	CITATIONS
55	The Impact of Phenotypic Switching on Glioblastoma Growth and Invasion. PLoS Computational Biology, 2012, 8, e1002556.	3.2	90
56	Clinically significant copy number alterations and complex rearrangements of <i>MYB</i> and <i>NFIB</i> in head and neck adenoid cystic carcinoma. Genes Chromosomes and Cancer, 2012, 51, 805-817.	2.8	136
57	System-Scale Network Modeling of Cancer Using EPoC. Advances in Experimental Medicine and Biology, 2012, 736, 617-643.	1.6	1
58	Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology, 2011, 7, 486.	7.2	80
59	Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence: A Journal of RNA Regulation, 2011, 2, 3.	8.1	78
60	Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genetics, 2010, 42, 715-721.	21.4	642
61	Do two mutually exclusive gene modules define the phenotypic diversity of mammalian smooth muscle?. Molecular Genetics and Genomics, 2008, 280, 127-37.	2.1	15
62	An improved method for detecting and delineating genomic regions with altered gene expression in cancer. Genome Biology, 2008, 9, R13.	9.6	15
63	Smooth Muscle Expression of Lipoma Preferred Partner Is Mediated by an Alternative Intronic Promoter That Is Regulated by Serum Response Factor/Myocardin. Circulation Research, 2008, 103, 61-69.	4.5	17
64	Models from experiments: combinatorial drug perturbations of cancer cells. Molecular Systems Biology, 2008, 4, 216.	7.2	168
65	Threshold-free high-power methods for the ontological analysis of genome-wide gene-expression studies. Genome Biology, 2007, 8, R74.	9.6	20
66	DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Molecular and Cellular Biochemistry, 2006, 281, 1-15.	3.1	28
67	Gene expression analysis suggests that EBF-1 and PPARÎ ³ 2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics. Physiological Genomics, 2005, 23, 206-216.	2.3	53
68	Predictive screening for regulators of conserved functional gene modules (gene batteries) in mammals. BMC Genomics, 2005, 6, 68.	2.8	35
69	Neural Cell Adhesion Molecule-Deficient β-Cell Tumorigenesis Results in Diminished Extracellular Matrix Molecule Expression and Tumour Cell-Matrix Adhesion. Tumor Biology, 2005, 26, 103-112.	1.8	8
70	Identification of Human Intestinal Alkaline Sphingomyelinase as a Novel Ecto-enzyme Related to the Nucleotide Phosphodiesterase Family. Journal of Biological Chemistry, 2003, 278, 38528-38536.	3.4	122
71	Prediction of Cell Type-Specific Gene Modules: Identification and Initial Characterization of a Core Set of Smooth Muscle-Specific Genes. Genome Research, 2003, 13, 1838-54.	5.5	32
72	Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference. Frontiers in Genetics, 0, 13, .	2.3	0