David Deshazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022800/publications.pdf

Version: 2024-02-01

33 papers

2,786 citations

394421 19 h-index 32 g-index

34 all docs 34 docs citations

34 times ranked 2218 citing authors

#	Article	IF	CITATIONS
1	Genomic plasticity of the causative agent of melioidosis, <i>Burkholderia pseudomallei</i> Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14240-14245.	7.1	675
2	Structural flexibility in the <i>Burkholderia mallei</i> genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14246-14251.	7.1	366
3	Type VI secretion is a major virulence determinant inBurkholderia mallei. Molecular Microbiology, 2007, 64, 1466-1485.	2.5	293
4	The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in <i>Burkholderia pseudomallei</i>). Infection and Immunity, 2011, 79, 1512-1525.	2.2	258
5	Glanders in a Military Research Microbiologist. New England Journal of Medicine, 2001, 345, 256-258.	27.0	224
6	Molecular Insights into <i>Burkholderia pseudomallei</i> and <i>Burkholderia mallei</i> Pathogenesis. Annual Review of Microbiology, 2010, 64, 495-517.	7.3	223
7	<i>Burkholderia mallei</i> Cluster 1 Type VI Secretion Mutants Exhibit Growth and Actin Polymerization Defects in RAW 264.7 Murine Macrophages. Infection and Immunity, 2010, 78, 88-99.	2.2	78
8	Genomic Diversity of <i>Burkholderia pseudomallei</i> Clinical Isolates: Subtractive Hybridization Reveals a <i>Burkholderia mallei</i> -Specific Prophage in <i>B. pseudomallei</i> 1026b. Journal of Bacteriology, 2004, 186, 3938-3950.	2.2	72
9	Molecular Characterization of Genetic Loci Required for Secretion of Exoproducts in <i>Burkholderia pseudomallei</i> Journal of Bacteriology, 1999, 181, 4661-4664.	2.2	64
10	Melioidosis: molecular aspects of pathogenesis. Expert Review of Anti-Infective Therapy, 2014, 12, 1487-1499.	4.4	62
11	Development of Subunit Vaccines That Provide High-Level Protection and Sterilizing Immunity against Acute Inhalational Melioidosis. Infection and Immunity, 2018, 86, .	2.2	55
12	<i>Burkholderia mallei tssM</i> Encodes a Putative Deubiquitinase That Is Secreted and Expressed inside Infected RAW 264.7 Murine Macrophages. Infection and Immunity, 2009, 77, 1636-1648.	2.2	53
13	Proteomic Analysis of the Burkholderia pseudomallei Type II Secretome Reveals Hydrolytic Enzymes, Novel Proteins, and the Deubiquitinase TssM. Infection and Immunity, 2014, 82, 3214-3226.	2.2	52
14	Virulence of clinical and environmental isolates of <i>Burkholderia oklahomensis </i> and <i>Burkholderia thailandensis </i> In hamsters and mice. FEMS Microbiology Letters, 2007, 277, 64-69.	1.8	45
15	Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms. PLoS Computational Biology, 2015, 11, e1004088.	3.2	34
16	Detection of the host immune response to Burkholderia mallei heat-shock proteins GroEL and DnaK in a glanders patient and infected mice. Diagnostic Microbiology and Infectious Disease, 2007, 59, 137-147.	1.8	28
17	A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiological Research, 2019, 226, 48-54.	5.3	28
18	The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis. BMC Microbiology, 2012, 12, 117.	3.3	27

#	Article	IF	Citations
19	A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. Journal of Biological Chemistry, 2019, 294, 13248-13268.	3.4	27
20	Distinct human antibody response to the biological warfare agent < i > Burkholderia mallei < /i > Virulence, 2012, 3, 510-514.	4.4	18
21	Thailandenes, Cryptic Polyene Natural Products Isolated from <i>Burkholderia thailandensis</i> Using Phenotype-Guided Transposon Mutagenesis. ACS Chemical Biology, 2020, 15, 1195-1203.	3.4	15
22	pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infection and Immunity, 2017, 85 , .	2.2	14
23	Deletion of Two Genes in Burkholderia pseudomallei MSHR668 That Target Essential Amino Acids Protect Acutely Infected BALB/c Mice and Promote Long Term Survival. Vaccines, 2019, 7, 196.	4.4	13
24	A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei. Microbiology (United Kingdom), 2018, 164, 1196-1211.	1.8	12
25	Application of Polysaccharide Microarray Technology for the Serodiagnosis of <i>Burkholderia pseudomallei < /i>Infection (Melioidosis) in Humans. Journal of Carbohydrate Chemistry, 2008, 27, 32-40.</i>	1.1	11
26	Burkholderia pseudomallei Detection among Hospitalized Patients, Sarawak. American Journal of Tropical Medicine and Hygiene, 2020, 102, 388-391.	1.4	8
27	The Burkholderia pseudomallei <i>hmqA-G</i> Locus Mediates Competitive Fitness against Environmental Gram-Positive Bacteria. Microbiology Spectrum, 2021, 9, e0010221.	3.0	7
28	Activation of Toll-Like Receptors by Live Gram-Negative Bacterial Pathogens Reveals Mitigation of TLR4 Responses and Activation of TLR5 by Flagella. Frontiers in Cellular and Infection Microbiology, 2021, 11, 745325.	3.9	6
29	A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells in Burkholderia pseudomallei. Microbiology (United Kingdom), 2022, 168, .	1.8	6
30	DBSecSys 2.0: a database of Burkholderia mallei and Burkholderia pseudomallei secretion systems. BMC Bioinformatics, 2016, 17, 387.	2.6	4
31	A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence, 2020, 11, 1041-1058.	4.4	4
32	The Madagascar Hissing Cockroach as an Alternative Non-mammalian Animal Model to Investigate Virulence, Pathogenesis, and Drug Efficacy. Journal of Visualized Experiments, 2017, , .	0.3	3
33	Burkholderia pseudomallei JW270 Is Lethal in the Madagascar Hissing Cockroach Infection Model and Can Be Utilized at Biosafety Level 2 to Identify Putative Virulence Factors. Infection and Immunity, 0, , .	2.2	O