Robert Sackstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	4.7	39
2	Leptin secreted from testicular microenvironment modulates hedgehog signaling to augment the endogenous function of Leydig cells. Cell Death and Disease, 2022, 13, 208.	6.3	7
3	Identification of α1,2-fucosylated signaling and adhesion molecules in head and neck squamous cell carcinoma. Glycobiology, 2022, 32, 441-455.	2.5	6
4	Abstract 2400: Fucosyltransferase expression is associated with head and neck cancer survival. Cancer Research, 2022, 82, 2400-2400.	0.9	0
5	Fucosyltransferase-specific inhibition <i>via</i> next generation of fucose mimetics. Chemical Communications, 2021, 57, 1145-1148.	4.1	3
6	Emerging glycoâ€based strategies to steer immune responses. FEBS Journal, 2021, 288, 4746-4772.	4.7	22
7	Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. Journal of Histochemistry and Cytochemistry, 2021, 69, 002215542110254.	2.5	5
8	The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Scientific Reports, 2020, 10, 13162.	3.3	43
9	sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. Journal of Immunology, 2020, 205, 1920-1932.	0.8	3
10	Exofucosylation of Adipose Mesenchymal Stromal Cells Alters Their Secretome Profile. Frontiers in Cell and Developmental Biology, 2020, 8, 584074.	3.7	12
11	Defibrotide inhibits donor leucocyteâ€endothelial interactions and protects against acute graftâ€versusâ€host disease. Journal of Cellular and Molecular Medicine, 2020, 24, 8031-8044.	3.6	23
12	Glycoengineering of chimeric antigen receptor (CAR) T-cells to enforce E-selectin binding. Journal of Biological Chemistry, 2019, 294, 18465-18474.	3.4	35
13	Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. Frontiers in Immunology, 2019, 10, 1151.	4.8	52
14	Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature Cell Biology, 2019, 21, 627-639.	10.3	160
15	Bone marrow mesenchymal stem/stromal cells from risk-stratified acute myeloid leukemia patients are anti-inflammatory in <i>in vivo</i> preclinical models of hematopoietic reconstitution and severe colitis. Haematologica, 2019, 104, e54-e58.	3.5	12
16	Optimizing human Treg immunotherapy by Treg subset selection and E-selectin ligand expression. Scientific Reports, 2018, 8, 420.	3.3	23
17	Distinct human $\hat{I}\pm(1,3)$ -fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. Journal of Biological Chemistry, 2018, 293, 7300-7314.	3.4	61
18	Imaging specific cellular glycan structures using glycosyltransferases via click chemistry. Glycobiology, 2018, 28, 69-79.	2.5	22

ROBERT SACKSTEIN

#	Article	IF	CITATIONS
19	Inhibition of fucosylation in human invasive ductal carcinoma reduces Eâ€selectin ligand expression, cell proliferation, and <scp>ERK</scp> 1/2 and p38 <scp>MAPK</scp> activation. Molecular Oncology, 2018, 12, 579-593.	4.6	50
20	Production via good manufacturing practice of exofucosylated human mesenchymal stromal cells for clinical applications. Cytotherapy, 2018, 20, 1110-1123.	0.7	12
21	Ligation of the CD44 Glycoform HCELL on Culture-Expanded Human Monocyte-Derived Dendritic Cells Programs Transendothelial Migration. Journal of Immunology, 2018, 201, 1030-1043.	0.8	17
22	Staining of E-selectin ligands on paraffin-embedded sections of tumor tissue. BMC Cancer, 2018, 18, 495.	2.6	13
23	The First Step in Adoptive Cell Immunotherapeutics: Assuring Cell Delivery via Glycoengineering. Frontiers in Immunology, 2018, 9, 3084.	4.8	17
24	Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology. Journal of Immunology, 2017, 198, 3576-3587.	0.8	33
25	T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Laboratory Investigation, 2017, 97, 669-697.	3.7	167
26	Leukocyte-borne α(1,3)-fucose is a negative regulator of β2-integrin-dependent recruitment in lung inflammation. Journal of Leukocyte Biology, 2017, 101, 459-470.	3.3	12
27	A Glycovariant of Human CD44 is Characteristically Expressed on Human Mesenchymal Stem Cells. Stem Cells, 2017, 35, 1080-1092.	3.2	35
28	E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Frontiers in Immunology, 2017, 8, 1878.	4.8	90
29	mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell–derived hematopoietic progenitors. Journal of Clinical Investigation, 2017, 127, 2433-2437.	8.2	23
30	Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2501-2511.	3.2	48
31	Translational glycobiology: Patient-oriented glycoscience research. Glycobiology, 2016, 26, 544-545.	2.5	2
32	Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology. Glycobiology, 2016, 26, 560-570.	2.5	21
33	Western Blot Analysis of Adhesive Interactions Under Fluid Shear Conditions: The Blot Rolling Assay. Methods in Molecular Biology, 2015, 1312, 399-410.	0.9	2
34	G-CSF Induces Membrane Expression of a Myeloperoxidase Glycovariant that Operates as an E-selectin Ligand on Human Myeloid Cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10696-10701.	7.1	19
35	Glycoengineering of HCELL, the Human Bone Marrow Homing Receptor: Sweetly Programming Cell Migration. Annals of Biomedical Engineering, 2012, 40, 766-776.	2.5	45
36	Engineering cellular trafficking via glycosyltransferaseâ€programmed stereosubstitution. Annals of the New York Academy of Sciences, 2012, 1253, 193-200.	3.8	13

ROBERT SACKSTEIN

#	Article	IF	CITATIONS
37	The biology of CD44 and HCELL in hematopoiesis: the â€~step 2-bypass pathway' and other emerging perspectives. Current Opinion in Hematology, 2011, 18, 239-248.	2.5	50
38	CD44 and HCELL: Preventing hematogenous metastasis at step 1. FEBS Letters, 2011, 585, 3148-3158.	2.8	59
39	Hitting the sweet spot for lymphoma. Blood, 2010, 115, 4626-4627.	1.4	1
40	Directing Stem Cell Trafficking via GPS. Methods in Enzymology, 2010, 479, 93-105.	1.0	17
41	Regulation of Heparan Sulfate and Chondroitin Sulfate Glycosaminoglycan Biosynthesis by 4-Fluoro-glucosamine in Murine Airway Smooth Muscle Cells. Journal of Biological Chemistry, 2009, 284, 16832-16839.	3.4	32
42	Glycosyltransferaseâ€programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunological Reviews, 2009, 230, 51-74.	6.0	75
43	Western Blot Analysis of Adhesive Interactions under Fluid Shear Conditions: The Blot Rolling Assay. Methods in Molecular Biology, 2009, 536, 343-354.	0.9	8
44	Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nature Medicine, 2008, 14, 181-187.	30.7	573
45	A Revision of Billingham's Tenets: The Central Role of Lymphocyte Migration in Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2006, 12, 2-8.	2.0	88
46	The Blot Rolling Assay: A Method for Identifying Adhesion Molecules Mediating Binding Under Shear Conditions. , 2006, 341, 217-226.		6
47	HCELL Is the Major E- and L-Selectin Ligand Expressed on Human Hematopoietic Progenitor Cells and Colon Carcinoma Cells Blood, 2006, 108, 4177-4177.	1.4	0
48	The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Current Opinion in Hematology, 2005, 12, 444-450.	2.5	114
49	Development of Late over Early Full Donor Chimerism (FDC) Results in Improved Progression-Free and Overall Survival in Patients with Advanced Malignant Lymphomas Receiving Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) Blood, 2005, 106, 3665-3665.	1.4	0
50	The Bone Marrow Is Akin to Skin: HCELL and the Biology of Hematopoietic Stem Cell Homing. Journal of Investigative Dermatology, 2004, 122, 1061-1069.	0.7	78
51	In vitro adherence of lymphocytes to dermal endothelium under shear stress: implications in pathobiology and steroid therapy of acute cutaneous GVHD. Blood, 2003, 101, 771-778.	1.4	11
52	Molecular Biology of the Human and Mouse MHC Class III Genes: Phylogenetic Conservation, Genetics and Regulation of Expression. Immunological Reviews, 1985, 87, 185-208.	6.0	9