
Leah R Sabin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022629/publications.pdf Version: 2024-02-01

LEAH D SARIN

#	Article	IF	CITATIONS
1	RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature, 2017, 547, 114-117.	13.7	57
2	A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes and Development, 2016, 30, 1658-1670.	2.7	49
3	Virus-induced translational arrest through 4EBP1/2-dependent decay of 5′-TOP mRNAs restricts viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2920-9.	3.3	45
4	Drosha as an interferon-independent antiviral factor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7108-7113.	3.3	64
5	Small creatures use small <scp>RNA</scp> s to direct antiviral defenses. European Journal of Immunology, 2013, 43, 27-33.	1.6	9
6	Dogma Derailed: The Many Influences of RNA on the Genome. Molecular Cell, 2013, 49, 783-794.	4.5	153
7	ERK signaling couples nutrient status to antiviral defense in the insect gut. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15025-15030.	3.3	88
8	Dicer-2 Processes Diverse Viral RNA Species. PLoS ONE, 2013, 8, e55458.	1.1	101
9	Transcriptional Pausing Controls a Rapid Antiviral Innate Immune Response in Drosophila. Cell Host and Microbe, 2012, 12, 531-543.	5.1	78
10	Degradation of Host MicroRNAs by Poxvirus Poly(A) Polymerase Reveals Terminal RNA Methylation as a Protective Antiviral Mechanism. Cell Host and Microbe, 2012, 12, 200-210.	5.1	94
11	Clobal Analysis of RNA Secondary Structure in Two Metazoans. Cell Reports, 2012, 1, 69-82.	2.9	126
12	The Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila. Current Biology, 2011, 21, 1888-1893.	1.8	127
13	Innate antiviral immunity in Drosophila. Current Opinion in Immunology, 2010, 22, 4-9.	2.4	117
14	RNAi Screening for Host Factors Involved in Vaccinia Virus Infection using Drosophila Cells. Journal of Visualized Experiments, 2010, , .	0.2	8
15	Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in <i>Drosophila melanogaster</i> and <i>Drosophila virilis</i> . Genetics, 2010, 185, 1519-1534.	1.2	34
16	Ars2 Regulates Both miRNA- and siRNA- Dependent Silencing and Suppresses RNA Virus Infection in Drosophila. Cell, 2009, 138, 340-351.	13.5	186
17	Ars2 Links the Nuclear Cap-Binding Complex to RNA Interference and Cell Proliferation. Cell, 2009, 138, 328-339.	13.5	177
18	The RNA Binding Domain of Influenza A Virus NS1 Protein Affects Secretion of Tumor Necrosis Factor Alpha, Interleukin-6, and Interferon in Primary Murine Tracheal Epithelial Cells. Journal of Virology, 2007, 81, 12717-12717.	1.5	1

#	Article	IF	CITATIONS
19	The RNA Binding Domain of Influenza A Virus NS1 Protein Affects Secretion of Tumor Necrosis Factor Alpha, Interleukin-6, and Interferon in Primary Murine Tracheal Epithelial Cells. Journal of Virology, 2007, 81, 9469-9480.	1.5	58