James I Prosser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8022511/publications.pdf Version: 2024-02-01

IAMES | DDOSSED

#	Article	IF	CITATIONS
1	Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures. Biology and Fertility of Soils, 2022, 58, 241-249.	2.3	29
2	Chronic Environmental Perturbation Influences Microbial Community Assembly Patterns. Environmental Science & Technology, 2022, 56, 2300-2311.	4.6	21
3	Towards meaningful scales in ecosystem microbiome research. Environmental Microbiology, 2021, 23, 1-4.	1.8	10
4	Use and abuse of potential rates in soil microbiology. Soil Biology and Biochemistry, 2021, 157, 108242.	4.2	26
5	Glacier forelands reveal fundamental plant and microbial controls on shortâ€ŧerm ecosystem nitrogen retention. Journal of Ecology, 2021, 109, 3710-3723.	1.9	9
6	The contribution of ammonia-oxidizing archaea and bacteria to gross nitrification under different substrate availability. Soil Biology and Biochemistry, 2021, 160, 108353.	4.2	39
7	Preferential temperature and ammonia concentration for in-situ growth of Candidatus NÑ—trĐ¾Ñ•Đ¾Ñ•Đ¾Ñ•mÑ ammonia oxidising archaea. Soil Biology and Biochemistry, 2021, 162, 108405.	I-NัยNั• 4.2	9
8	Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology, 2020, 26, 103-118.	4.2	227
9	Selective inhibition of ammonia oxidising archaea by simvastatin stimulates growth of ammonia oxidising bacteria. Soil Biology and Biochemistry, 2020, 141, 107673.	4.2	49
10	Experimental testing of hypotheses for temperature―and <scp>pH</scp> â€based niche specialization of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 2020, 22, 4032-4045.	1.8	21
11	Differential Ecosystem Function Stability of Ammonia-Oxidizing Archaea and Bacteria following Short-Term Environmental Perturbation. MSystems, 2020, 5, .	1.7	17
12	Putting science back into microbial ecology: a question of approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190240.	1.8	37
13	Oxygen preference of deeply-rooted mesophilic thaumarchaeota in forest soil. Soil Biology and Biochemistry, 2020, 148, 107848.	4.2	12
14	Conceptual challenges in microbial community ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190241.	1.8	21
15	The application of high-throughput sequencing technology to analysis of amoA phylogeny and environmental niche specialisation of terrestrial bacterial ammonia-oxidisers. Environmental Microbiomes, 2019, 14, 3.	2.2	53
16	Exploring soil microbial communities: Opportunities for soil ecology research. Soil Ecology Letters, 2019, 1, 1-2.	2.4	5
17	Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biology and Biochemistry, 2019, 129, 184-190.	4.2	16
18	Genome Sequence of " <i>Candidatus</i> Nitrosocosmicus franklandus―C13, a Terrestrial Ammonia-Oxidizing Archaeon. Microbiology Resource Announcements, 2019, 8, .	0.3	11

#	Article	IF	CITATIONS
19	The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME Journal, 2018, 12, 1084-1093.	4.4	274
20	Approaches to understanding the ecology and evolution of understudied terrestrial archaeal ammonia-oxidisers. Emerging Topics in Life Sciences, 2018, 2, 619-628.	1.1	10
21	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	5.8	992
22	Archaea produce lower yields of N ₂ O than bacteria during aerobic ammonia oxidation in soil. Environmental Microbiology, 2017, 19, 4829-4837.	1.8	243
23	Temperature responses of soil ammonia-oxidising archaea depend on pH. Soil Biology and Biochemistry, 2017, 106, 61-68.	4.2	58
24	Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environmental Microbiology, 2017, 19, 2681-2700.	1.8	117
25	Abiotic Conversion of Extracellular NH ₂ OH Contributes to N ₂ O Emission during Ammonia Oxidation. Environmental Science & Technology, 2017, 51, 13122-13132.	4.6	104
26	Kinetics of NH ₃ â€oxidation, NOâ€ŧurnover, N ₂ Oâ€production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environmental Microbiology, 2017, 19, 4882-4896.	1.8	86
27	Ammoniaâ€oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology, 2017, 19, 4939-4952.	1.8	107
28	Ammonia oxidisers in a non-nitrifying Brazilian savanna soil. FEMS Microbiology Ecology, 2017, 93, .	1.3	5
29	Spotlight on $\hat{a} \in \$ Jim Prosser. FEMS Microbiology Letters, 2017, 364, .	0.7	0
30	Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiology Ecology, 2017, 93, .	1.3	8
31	Editorial: FEMS Letters: investing in science for 40 years. FEMS Microbiology Letters, 2017, 364, .	0.7	0
32	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	1.5	479
33	Stream drying drives microbial ammonia oxidation and firstâ€flush nitrate export. Ecology, 2016, 97, 2192-2198.	1.5	35
34	Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiology Ecology, 2016, 92, fiw091.	1.3	76
35	A timely reminder of technical limitations. Microbial Biotechnology, 2016, 9, 435-435.	2.0	1
36	Short-term impact of soybean management on ammonia oxidizers in a Brazilian savanna under restoration as revealed by coupling different techniques. Biology and Fertility of Soils, 2016, 52, 401-412.	2.3	14

#	Article	IF	CITATIONS
37	Isolation of â€~ <i>Candidatus</i> Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology, 2016, 92, fiw057.	1.3	197
38	Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra― Applied and Environmental Microbiology, 2016, 82, 2608-2619.	1.4	117
39	Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME Journal, 2016, 10, 85-96.	4.4	94
40	The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature. PLoS ONE, 2016, 11, e0165448.	1.1	41
41	Ammonia oxidation is not required for growth of GroupÂ1.1c soil Thaumarchaeota. FEMS Microbiology Ecology, 2015, 91, .	1.3	70
42	Dispersing misconceptions and identifying opportunities for the use of 'omics' in soil microbial ecology. Nature Reviews Microbiology, 2015, 13, 439-446.	13.6	234
43	Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9370-9375.	3.3	98
44	pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils. Microbial Ecology, 2015, 69, 879-883.	1.4	95
45	Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	1.3	61
46	Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 2014, 513, 81-84.	13.7	528
47	Most influential FEMS publications. FEMS Microbiology Letters, 2014, 354, 83-84.	0.7	0
48	Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 2014, 89, 542-552.	1.3	141
49	Soil Nitrifiers and Nitrification. , 2014, , 347-383.		28
50	The Family Nitrosomonadaceae. , 2014, , 901-918.		127
51	Activity of the ammonia oxidising bacteria is responsible for zinc tolerance development of the ammonia oxidising community in soil: A stable isotope probing study. Soil Biology and Biochemistry, 2013, 58, 244-247.	4.2	21
52	Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biology and Biochemistry, 2013, 62, 129-133.	4.2	86
53	The life beneath our feet. Nature, 2013, 494, 40-41.	13.7	40
54	Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecology, 2012, 12, 14.	3.0	34

#	Article	lF	CITATIONS
55	Temporal and depth-related differences in prokaryotic communities in abyssal sediments associated with particulate organic carbon flux. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 70, 26-35.	0.6	13
56	Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends in Microbiology, 2012, 20, 523-531.	3.5	853
57	Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiology Ecology, 2012, 80, 114-123.	1.3	160
58	Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiology Letters, 2012, 327, 41-46.	0.7	245
59	Differential effects of microorganism-invertebrate interactions on benthic nitrogen cycling. FEMS Microbiology Ecology, 2012, 82, 11-22.	1.3	76
60	Ecosystem processes and interactions in a morass of diversity. FEMS Microbiology Ecology, 2012, 81, 507-519.	1.3	111
61	Strategies to Determine Diversity, Growth, and Activity of Ammonia-Oxidizing Archaea in Soil. Methods in Enzymology, 2011, 496, 3-34.	0.4	18
62	Community profiling and quantification of putative autotrophic thaumarchaeal communities in environmental samples. Environmental Microbiology Reports, 2011, 3, 245-253.	1.0	18
63	Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions. PLoS ONE, 2011, 6, e28284.	1.1	120
64	From the Chief Editor and the former Chief Editor. FEMS Microbiology Ecology, 2011, 75, 1-1.	1.3	0
65	Ecology and metagenomics of soil microorganisms. FEMS Microbiology Ecology, 2011, 78, 1-2.	1.3	10
66	Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME Journal, 2011, 5, 1067-1071.	4.4	543
67	Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass and Bioenergy, 2011, 35, 4605-4612.	2.9	25
68	Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15892-15897.	3.3	464
69	Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils. Applied and Environmental Microbiology, 2011, 77, 4618-4625.	1.4	357
70	Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21206-21211.	3.3	402
71	Diversity of Endospore-forming Bacteria in Soil: Characterization and Driving Mechanisms. Soil Biology, 2011, , 31-59.	0.6	35
72	The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 2010, 184, 73-80.	6.5	97

#	Article	IF	CITATIONS
73	Degradation of metalaxyl-M in contrasting soils is influenced more by differences in physicochemical characteristics than in microbial community composition after re-inoculation of sterilised soils. Soil Biology and Biochemistry, 2010, 42, 1123-1131.	4.2	20
74	Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	91
75	Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. FEMS Microbiology Ecology, 2010, 74, 302-315.	1.3	72
76	Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiology Ecology, 2010, 74, 566-574.	1.3	346
77	The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 2010, 8, 523-529.	13.6	562
78	Replicate or lie. Environmental Microbiology, 2010, 12, 1806-1810.	1.8	227
79	Thaumarchaeal Ammonia Oxidation in an Acidic Forest Peat Soil Is Not Influenced by Ammonium Amendment. Applied and Environmental Microbiology, 2010, 76, 7626-7634.	1.4	180
80	Stable Isotope Probing Analysis of Interactions between Ammonia Oxidizers. Applied and Environmental Microbiology, 2010, 76, 2468-2477.	1.4	50
81	Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17240-17245.	3.3	305
82	Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity. PLoS ONE, 2010, 5, e10834.	1.1	149
83	Correlation of Methane Production and Functional Gene Transcriptional Activity in a Peat Soil. Applied and Environmental Microbiology, 2009, 75, 6679-6687.	1.4	152
84	Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biology and Biochemistry, 2009, 41, 467-472.	4.2	25
85	Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry, 2009, 41, 687-694.	4.2	74
86	Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies. Soil Biology and Biochemistry, 2009, 41, 2292-2298.	4.2	130
87	Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology, 2009, 7, 79.	1.7	228
88	Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiology Ecology, 2009, 70, 99-108.	1.3	235
89	Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiology Ecology, 2009, 70, 367-376.	1.3	143
90	Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiology Ecology, 2009, 70, 208-217.	1.3	155

#	Article	IF	CITATIONS
91	Showcasing microbial ecology research in China. FEMS Microbiology Ecology, 2009, 70, 163-164.	1.3	1
92	Functional principal component data analysis: A new method for analysing microbial community fingerprints. Journal of Microbiological Methods, 2009, 79, 89-95.	0.7	24
93	Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiology Ecology, 2008, 64, 78-89.	1.3	41
94	Multitrophic interactions in the rhizosphere Rhizosphere microbiology: at the interface of many disciplines and expertises. FEMS Microbiology Ecology, 2008, 65, 179-179.	1.3	18
95	Gut microbiology: the black box and beyond. FEMS Microbiology Ecology, 2008, 66, 485-486.	1.3	1
96	Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME Journal, 2008, 2, 221-232.	4.4	134
97	Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME Journal, 2008, 2, 92-104.	4.4	71
98	Plant host habitat and root exudates shape soil bacterial community structure. ISME Journal, 2008, 2, 1221-1230.	4.4	958
99	Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental Microbiology, 2008, 10, 534-541.	1.8	86
100	Growth, activity and temperature responses of ammoniaâ€oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 2008, 10, 1357-1364.	1.8	658
101	Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environmental Microbiology, 2008, 10, 2245-2256.	1.8	71
102	The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 2008, 10, 2966-2978.	1.8	1,104
103	Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology, 2008, 10, 2931-2941.	1.8	531
104	Novel Screen for Investigating In Situ Rhizosphere Production of the Antibiotic 2,4â€Diacetylphloroglucinol by Bacterial Inocula. Communications in Soil Science and Plant Analysis, 2008, 39, 1720-1732.	0.6	4
105	Nutrient Amendments in Soil DNA Stable Isotope Probing Experiments Reduce the Observed Methanotroph Diversity. Applied and Environmental Microbiology, 2007, 73, 798-807.	1.4	70
106	The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 2007, 5, 384-392.	13.6	796
107	Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environmental Microbiology, 2007, 9, 2211-2219.	1.8	286
108	Afforestation of moorland leads to changes in crenarchaeal community structure. FEMS Microbiology Ecology, 2007, 60, 51-59.	1.3	35

#	Article	IF	CITATIONS
109	PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition. FEMS Microbiology Ecology, 2007, 61, 305-316.	1.3	35
110	Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiology Ecology, 2007, 62, 12-23.	1.3	92
111	Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes fromNitrosospiraspecies isolated from soil. FEMS Microbiology Letters, 2007, 266, 83-89.	0.7	69
112	Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology, 2006, 8, 214-222.	1.8	287
113	Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environmental Microbiology, 2006, 8, 684-696.	1.8	172
114	Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 2006, 8, 1005-1016.	1.8	196
115	Crenarchaeal community assembly and microdiversity in developing soils at two sites associated with deglaciation. Environmental Microbiology, 2006, 8, 1382-1393.	1.8	46
116	Maintenance of soil functioning following erosion of microbial diversity. Environmental Microbiology, 2006, 8, 2162-2169.	1.8	251
117	The influence of synthetic sheep urine on ammonia oxidizing bacterial communities in grassland soil. FEMS Microbiology Ecology, 2006, 56, 444-454.	1.3	37
118	Sheep-urine-induced changes in soil microbial community structure. FEMS Microbiology Ecology, 2006, 56, 310-320.	1.3	29
119	Comparison of PCR primer-based strategies for characterization of ammonia oxidizer communities in environmental samples. FEMS Microbiology Ecology, 2006, 56, 482-493.	1.3	40
120	Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442, 806-809.	13.7	2,144
121	Studying plant–microbe interactions using stable isotope technologies. Current Opinion in Biotechnology, 2006, 17, 98-102.	3.3	78
122	Rhizosphere carbon flow: a driver of soil microbial diversity?. , 2005, , 154-168.		3
123	Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 2005, 7, 301-313.	1.8	429
124	Primary succession of soil Crenarchaeota across a receding glacier foreland. Environmental Microbiology, 2005, 7, 337-347.	1.8	145
125	Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Environmental Microbiology, 2005, 7, 544-552.	1.8	31
126	Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environmental Microbiology, 2005, 7, 676-684.	1.8	156

#	Article	IF	CITATIONS
127	Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environmental Microbiology, 2005, 7, 828-838.	1.8	153
128	Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environmental Microbiology, 2005, 7, 1349-1360.	1.8	104
129	Influence of Inorganic Nitrogen Management Regime on the Diversity of Nitrite-Oxidizing Bacteria in Agricultural Grassland Soils. Applied and Environmental Microbiology, 2005, 71, 8323-8334.	1.4	139
130	Links between Plant and Rhizoplane Bacterial Communities in Grassland Soils, Characterized Using Molecular Techniques. Applied and Environmental Microbiology, 2005, 71, 6784-6792.	1.4	144
131	EFFECTS OF GRAZING ON MICROBIAL FUNCTIONAL GROUPS INVOLVED IN SOIL N DYNAMICS. Ecological Monographs, 2005, 75, 65-80.	2.4	201
132	Differences between Betaproteobacterial Ammonia-Oxidizing Communities in Marine Sediments and Those in Overlying Water. Applied and Environmental Microbiology, 2004, 70, 3789-3793.	1.4	28
133	Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Environmental Microbiology, 2004, 6, 861-867.	1.8	44
134	Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 2004, 10, 2100-2108.	4.2	43
135	Spatial structure in soil chemical and microbiological properties in an upland grassland. FEMS Microbiology Ecology, 2004, 49, 191-205.	1.3	154
136	A model for bacterial conjugal gene transfer on solid surfaces. FEMS Microbiology Ecology, 2003, 44, 67-78.	1.3	37
137	Effect of anoxia and high sulphide concentrations on heterotrophic microbial communities in reduced surface sediments (Black Spots) in sandy intertidal flats of the German Wadden Sea. FEMS Microbiology Ecology, 2003, 44, 291-301.	1.3	40
138	Molecular analysis of methanogenic archaeal communities in managed and natural upland pasture soils. Global Change Biology, 2003, 9, 1451-1457.	4.2	42
139	Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology, 2003, 5, 36-47.	1.8	235
140	The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environmental Microbiology, 2003, 5, 152-162.	1.8	96
141	Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 2003, 5, 1121-1132.	1.8	166
142	Diversity of Bacteria Associated with Natural AphidPopulations. Applied and Environmental Microbiology, 2003, 69, 7216-7223.	1.4	129
143	Community Structure of Ammonia-Oxidizing Bacteria within Anoxic Marine Sediments. Applied and Environmental Microbiology, 2003, 69, 1359-1371.	1.4	151
144	Spatial Analysis of Archaeal Community Structure inGrasslandSoil. Applied and Environmental Microbiology, 2003, 69, 7420-7429.	1.4	91

#	Article	IF	CITATIONS
145	Molecular Analysis of a Bacterial Chitinolytic Community in an Upland Pasture. Applied and Environmental Microbiology, 2002, 68, 5042-5050.	1.4	118
146	Impact of Protozoan Grazing on Bacterial Community Structure in Soil Microcosms. Applied and Environmental Microbiology, 2002, 68, 6094-6105.	1.4	300
147	Grassland Management Regimens Reduce Small-Scale Heterogeneity and Species Diversity of β-Proteobacterial Ammonia Oxidizer Populations. Applied and Environmental Microbiology, 2002, 68, 20-30.	1.4	187
148	The potential for anaerobic mineralisation of hydrocarbon constituents of oily drill cuttings from the North Sea seabed. Journal of Environmental Monitoring, 2002, 4, 553.	2.1	14
149	Impacts of Soil Faunal Community Composition on Model Grassland Ecosystems. Science, 2002, 298, 615-618.	6.0	260
150	The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Archives of Microbiology, 2002, 177, 279-289.	1.0	63
151	Molecular and functional diversity in soil micro-organisms. Plant and Soil, 2002, 244, 9-17.	1.8	120
152	Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie Van Leeuwenhoek, 2002, 81, 165-179.	0.7	85
153	Molecular and functional diversity in soil micro-organisms. , 2002, , 9-17.		13
154	Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing c cThe GenBank accession numbers for the sequences reported in this paper are AY080911–AY080961 Microbiology (United Kingdom), 2002, 148, 2331-2342.	0.7	238
155	Numerical Analysis of Grassland Bacterial Community Structure under Different Land Management Regimens by Using 16S Ribosomal DNA Sequence Data and Denaturing Gradient Gel Electrophoresis Banding Patterns. Applied and Environmental Microbiology, 2001, 67, 4554-4559.	1.4	247
156	Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiology Ecology, 2001, 35, 37-48.	1.3	88
157	Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiology Ecology, 2001, 37, 161-173.	1.3	126
158	Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis. Applied and Environmental Microbiology, 2001, 67, 2952-2957.	1.4	180
159	Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiology Ecology, 2001, 35, 37-48.	1.3	2
160	Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiology Ecology, 2001, 37, 161-173.	1.3	7
161	Quantitative analysis of ammonia oxidising bacteria using competitive PCR. FEMS Microbiology Ecology, 2000, 32, 167-175.	1.3	63
162	Extracellular factors affecting the adhesion ofPseudomonas fluorescens cells to glass surfaces. Microbiology, 2000, 69, 186-190.	0.5	7

#	Article	IF	CITATIONS
163	Some properties of thePseudomonas fluorescens adhesin and antiadhesin. Microbiology, 2000, 69, 191-195.	0.5	4
164	Regulation of the adhesion ofPseudomonas fluorescens cells to glass by extracellular volatile compounds. Microbiology, 2000, 69, 287-290.	0.5	3
165	Extracellular factors responsible for the adaptation ofPseudomonas fluorescens batch cultures to unfavorable conditions. Microbiology, 2000, 69, 524-529.	0.5	1
166	Bacterial Origin and Community Composition in the Barley Phytosphere as a Function of Habitat and Presowing Conditions. Applied and Environmental Microbiology, 2000, 66, 4372-4377.	1.4	140
167	Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities. Applied and Environmental Microbiology, 2000, 66, 5410-5418.	1.4	166
168	Quantitative analysis of ammonia oxidising bacteria using competitive PCR. FEMS Microbiology Ecology, 2000, 32, 167-175.	1.3	7
169	Nitrogen Cycling and Community Structure of Proteobacterial Î ² -Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments. Applied and Environmental Microbiology, 1999, 65, 213-220.	1.4	153
170	Molecular Analysis of Bacterial Community Structure and Diversity in Unimproved and Improved Upland Grass Pastures. Applied and Environmental Microbiology, 1999, 65, 1721-1730.	1.4	370
171	Phylogenetic Differences between Particle-Associated and Planktonic Ammonia-Oxidizing Bacteria of the Class <i>Proteobacteria</i> in the Northwestern Mediterranean Sea. Applied and Environmental Microbiology, 1999, 65, 779-786.	1.4	127
172	Comparative Diversity of Ammonia Oxidizer 16S rRNA Gene Sequences in Native, Tilled, and Successional Soils. Applied and Environmental Microbiology, 1999, 65, 2994-3000.	1.4	200
173	Colonisation and transmission of lux-marked and wild-type Aeromonas salmonicida strains in Atlantic salmon (Salmo salar L.). FEMS Microbiology Ecology, 1998, 27, 251-260.	1.3	14
174	Analysis of β-Subgroup Proteobacterial Ammonia Oxidizer Populations in Soil by Denaturing Gradient Gel Electrophoresis Analysis and Hierarchical Phylogenetic Probing. Applied and Environmental Microbiology, 1998, 64, 2958-2965.	1.4	245
175	Quantification of the presence and activity of specific microorganisms in nature. Molecular Biotechnology, 1997, 7, 103-120.	1.3	52
176	Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 1997, 63, 1489-1497.	1.4	711
177	Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 1997, 63, 2281-2286.	1.4	160
178	The role of the earthworm Lumbricus terrestris in the transport of bacterial inocula through soil. Biology and Fertility of Soils, 1996, 23, 132-139.	2.3	24
179	Luminescence-Based Systems for Detection of Bacteria in the Environment. Critical Reviews in Biotechnology, 1996, 16, 157-183.	5.1	57
180	Experimental verification of a mathematical model for pelleted growth of Streptomyces coelicolor A3(2) in submerged batch culture. Microbiology (United Kingdom), 1996, 142, 639-648.	0.7	28

#	Article	IF	CITATIONS
181	Experimental verification of a mathematical model for pelleted growth of Streptomyces coelicolor A3(2) in submerged batch culture. Microbiology (United Kingdom), 1996, 142, 1332-1332.	0.7	10
182	Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 1996, 62, 4147-4154.	1.4	378
183	The role of the earthworm Lumbricus terrestris in the transport of bacterial inocula through soil. Biology and Fertility of Soils, 1996, 23, 132-139.	2.3	Ο
184	A mathematical model for the growth of mycelial pellet populations. Biotechnology and Bioengineering, 1995, 46, 561-572.	1.7	12
185	Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiology Ecology, 1995, 17, 229-237.	1.3	19
186	Mathematical Modelling of Fungal Growth. , 1995, , 319-335.		18
187	Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil. Soil Biology and Biochemistry, 1995, 27, 881-892.	4.2	57
188	Kinetics of Filamentous Growth and Branching. , 1995, , 301-318.		41
189	Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiology Ecology, 1995, 17, 229-237.	1.3	1
190	Role of Pore Size Location in Determining Bacterial Activity during Predation by Protozoa in Soil. Applied and Environmental Microbiology, 1995, 61, 3537-3543.	1.4	108
191	Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Applied and Environmental Microbiology, 1995, 61, 2950-2957.	1.4	63
192	Survival and Activity of lux-Marked Aeromonas salmonicida in Seawater. Applied and Environmental Microbiology, 1995, 61, 3494-3498.	1.4	24
193	A partial chloroform-fumigation technique to characterise the spatial location of bacteria introduced into soil. Biology and Fertility of Soils, 1994, 17, 191-195.	2.3	17
194	Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiology Letters, 1994, 120, 363-367.	0.7	180
195	Potential luminescence as an indicator of activation of genetically-modified Pseudomonas fluorescens in liquid culture and in soil. Soil Biology and Biochemistry, 1994, 26, 747-755.	4.2	46
196	Molecular marker systems for detection of genetically engineered micro-organisms in the environment. Microbiology (United Kingdom), 1994, 140, 5-17.	0.7	156
197	Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Applied and Environmental Microbiology, 1994, 60, 1308-1316.	1.4	124
198	Novel method for the study of the population dynamics of a genetically modified microorganism in the gut of the earthworm Lumbricus terrestris. Biology and Fertility of Soils, 1993, 15, 55-59.	2.3	25

#	Article	IF	CITATIONS
199	Plasmid and chromosomally encoded luminescence marker systems for detection of Pseudomonas fluorescens in soil. Molecular Ecology, 1993, 2, 47-54.	2.0	73
200	Construction and detection of bioluminescent strains of <i>Bacillus subtilis</i> . Journal of Applied Bacteriology, 1993, 75, 350-359.	1.1	18
201	Control analysis of microbial interactions in continuous culture: a simulation study. Journal of General Microbiology, 1993, 139, 2309-2317.	2.3	7
202	Luminescence based detection of Erwinia carotovora subsp. Carotovora in soil. Soil Biology and Biochemistry, 1992, 24, 961-967.	4.2	19
203	Luminescence-based detection of Erwinia carotovora associated with rotting potato tubers. Letters in Applied Microbiology, 1992, 15, 121-124.	1.0	9
204	Inhibition of biofilm populations of Nitrosomonas europaea. Microbial Ecology, 1992, 24, 43-50.	1.4	17
205	Modelling microbial ecosystems. Journal of Applied Bacteriology, 1992, 73, 89S-95S.	1.1	6
206	Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil. FEMS Microbiology Letters, 1992, 99, 217-220.	0.7	22
207	Detection of a Single Genetically Modified Bacterial Cell in Soil by Using Charge Coupled Device-Enhanced Microscopy. Applied and Environmental Microbiology, 1992, 58, 2444-2448.	1.4	78
208	Detection of Lux-Gene Sequences in Escherichia Coli MM294 Extracted From Soil Using the Polymerase Chain Reaction and Gene Probing. , 1992, , 213-215.		0
209	Construction and Detection of Bioluminescent Bacillus Subtilis Strains. , 1992, , 209-212.		0
210	Growth Mechanisms and Growth Kinetics of Filamentous Microorganisms. Critical Reviews in Biotechnology, 1991, 10, 253-274.	5.1	154
211	Mineralization of Chitin in an estuarine sediment: The importance of the Chitosan pathway. Biochemical Systematics and Ecology, 1991, 19, 395-400.	0.6	41
212	Right and left handed helicity of chitin microfibrils in stipe cells inCoprinus cinereus. Protoplasma, 1991, 165, 64-70.	1.0	40
213	Protection of Nitrosomonas europaea colonizing clay minerals from inhibition by nitrapyrin. Journal of General Microbiology, 1991, 137, 1923-1929.	2.3	42
214	Apical hyphal extension in Streptomyces coelicolor A3(2). Journal of General Microbiology, 1990, 136, 1077-1084.	2.3	45
215	Autotrophic Nitrification in Bacteria. Advances in Microbial Physiology, 1990, 30, 125-181.	1.0	636
216	Mathematical Modeling Of Nitrification Processes. Advances in Microbial Ecology, 1990, , 263-304.	0.1	11

#	Article	IF	CITATIONS
217	Comparison of Tip Growth in Prokaryotic and Eukaryotic Filamentous Microorganisms. , 1990, , 233-259.		8
218	Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil. Applied and Environmental Microbiology, 1990, 56, 3368-3374.	1.4	140
219	The surface growth and activity ofNitrobacter. Microbial Ecology, 1988, 15, 21-39.	1.4	35
220	Surface attachment of nitrifying bacteria and their inhibition by potassium ethyl xanthate. Microbial Ecology, 1987, 14, 129-139.	1.4	39
221	Steady state and transient growth of autotrophic nitrifying bacteria. Archives of Microbiology, 1987, 147, 73-79.	1.0	81
222	Inhibition and Stimulation of Nitrification by Potassium Ethyl Xanthate. Microbiology (United) Tj ETQqO 0 0 rgBT	/Oyerlock	10 Tf 50 542
223	Effect of copper on inhibition by nitrapyrin of growth ofNitrosomonas europaea. Current Microbiology, 1986, 14, 177-179.	1.0	11
224	Inhibition of Ammonium Oxidation by Nitrapyrin in Soil and Liquid Culture. Applied and Environmental Microbiology, 1986, 52, 782-787.	1.4	40
225	Mycelial Growth and Branching of Streptomyces coelicolor A3(2) on Solid Medium. Microbiology (United Kingdom), 1983, 129, 2029-2036.	0.7	17

226	A Model for Hyphal Growth and Branching. Journal of General Microbiology, 1979, 111, 153-164.	2.3	136
227	Use of Finite Difference Method to Study a Model System of Nitrification at Low Substrate Concentrations. Journal of General Microbiology, 1977, 102, 119-128.	2.3	13
228	Nitrification Studies at Non-limiting Substrate Concentrations. Journal of General Microbiology, 1977, 102, 111-117.	2.3	13
229	Models of Microbial Interactions in the Soil. CRC Critical Reviews in Microbiology, 1976, 4, 463-498.	4.8	48