
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/802186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica, 2004, 137, 139-145.	1.2	128
2	Genotype by environment interaction for grain yield and carbon isotope discrimination of barley in Mediterranean Spain. Australian Journal of Agricultural Research, 1999, 50, 1263.	1.5	102
3	Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genomics, 2013, 14, 424.	2.8	101
4	Changes in carbon isotope discrimination in grain cereals from different regions of the western Mediterranean Basin during the past seven millennia. Palaeoenvironmental evidence of a differential change in aridity during the late Holocene. Global Change Biology, 1997, 3, 107-118.	9.5	100
5	Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theoretical and Applied Genetics, 2009, 119, 175-187.	3.6	99
6	Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theoretical and Applied Genetics, 1996, 93-93, 30-37.	3.6	96
7	Molecular marker-assisted selection for malting quality traits in barley. Molecular Breeding, 1997, 3, 427-437.	2.1	96
8	The impact of climate change on barley yield in the Mediterranean basin. European Journal of Agronomy, 2019, 106, 1-11.	4.1	93
9	Crop water availability in early agriculture: evidence from carbon isotope discrimination of seeds from a tenth millennium BP site on the Euphrates. Global Change Biology, 1999, 5, 201-212.	9.5	81
10	Title is missing!. Molecular Breeding, 1999, 5, 143-152.	2.1	80
11	Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. Journal of Experimental Botany, 2012, 63, 69-89.	4.8	80
12	Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theoretical and Applied Genetics, 2011, 122, 1363-1373.	3.6	75
13	QTLs for barley yield adaptation to Mediterranean environments in the â€~Nure'Â×Ââ€~Tremois' biparen population. Euphytica, 2014, 197, 73-86.	ntal 1.2	74
14	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	5.1	73
15	Verification of barley seed dormancy loci via linked molecular markers. Theoretical and Applied Genetics, 1996, 92, 87-91.	3.6	72
16	Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 2009, 113, 95-104.	5.1	68
17	Productivity in prehistoric agriculture: physiological models for the quantification of cereal yields as an alternative to traditional approaches. Journal of Archaeological Science, 2003, 30, 681-693.	2.4	62
18	The Spanish barley core collection. Genetic Resources and Crop Evolution, 1998, 45, 475-481.	1.6	61

#	Article	IF	CITATIONS
19	Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science, 1999, 143, 113-118.	3.6	60
20	Genetic control of dormancy in a Triumph/Morex cross in barley. Theoretical and Applied Genetics, 2004, 109, 62-70.	3.6	60
21	Mineral accumulation, carbon isotope discrimination and indirect selection for grain yield in two-rowed barley grown under semiarid conditions. European Journal of Agronomy, 1998, 9, 147-155.	4.1	57
22	Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breeding, 1998, 117, 531-535.	1.9	53
23	Remobilization of Preâ€Anthesis Assimilates to the Grain for Grain Only and Dualâ€Purpose (Forage and) Tj ETQq	1 1 0.7843 1.8	314 rgBT /○
24	Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.	5.1	51
25	Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Reports, 2001, 20, 105-111.	5.6	50
26	Further evidence supporting Morocco as a centre of origin of barley. Theoretical and Applied Genetics, 1999, 98, 913-918.	3.6	49
27	Integrating statistical and ecophysiological analyses of genotype by environment interaction for grain filling of barley I Field Crops Research, 1999, 62, 63-74.	5.1	49
28	Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. Journal of Experimental Botany, 2001, 52, 1499-1506.	4.8	47
29	CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis. Plant Cell Reports, 2019, 38, 417-433.	5.6	45
30	Production of large number of doubled haploid plants from barley anthers pretreated with high concentrations of mannitol. Plant Cell Reports, 1994, 13, 709-12.	5.6	44
31	Individual Locus Effects on Dormancy during Seed Development and After Ripening in Barley. Crop Science, 1999, 39, 74-79.	1.8	44
32	Mapping adaptation of barley to droughted environments. Euphytica, 2008, 161, 35-45.	1.2	44
33	RELATIONSHIP OF EXCISED-LEAF WATER LOSS RATE AND YIELD OF DURUM WHEAT IN DIVERSE ENVIRONMENTS. Canadian Journal of Plant Science, 1989, 69, 1075-1081.	0.9	43
34	Integration of statistical and physiological analyses of adaptation of near-isogenic barley lines. Theoretical and Applied Genetics, 1993, 86, 822-826.	3.6	42
35	FOCUS: Estimated Wheat Yields During the Emergence of Agriculture Based on the Carbon Isotope Discrimination of Grains: Evidence from a 10th Millennium BP Site on the Euphrates. Journal of Archaeological Science, 2001, 28, 341-350.	2.4	41
36	Barley adaptation and improvement in the Mediterranean basin. Plant Breeding, 2008, 127, 554-560.	1.9	40

#	Article	IF	CITATIONS
37	Grain size and nitrogen accumulation in sink-reduced barley under Mediterranean conditions. Field Crops Research, 1997, 52, 117-126.	5.1	39
38	Integrating statistical and ecophysiological analyses of genotype by environment interaction for grain filling of barley II Field Crops Research, 1999, 62, 75-84.	5.1	39
39	Measurement and Use of Excisedâ€Leaf Water Status in Wheat. Crop Science, 1989, 29, 1140-1145.	1.8	38
40	Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Reports, 2009, 28, 727-735.	5.6	36
41	Linkage map construction involving a reciprocal translocation. Theoretical and Applied Genetics, 2011, 122, 1029-1037.	3.6	35
42	The Development of β-Glucanase and Degradation of β-Glucan in Barley Grown in Scotland and Spain. Journal of Cereal Science, 1997, 26, 75-82.	3.7	34
43	Nitrogen fertilization of barley under semi-arid rainfed conditions. European Journal of Agronomy, 1995, 4, 309-316.	4.1	33
44	Morphological and Agronomical Diversity Patterns in the Spanish Barley Core Collection. Hereditas, 2004, 135, 217-225.	1.4	33
45	Genetic markers for doubled haploid response in barley. Euphytica, 2007, 158, 287-294.	1.2	33
46	Carbon Isotope Ratios in Ear Parts of Triticale. Plant Physiology, 1992, 100, 1033-1035.	4.8	32
47	Patterns of grain filling of spring and winter hexaploid triticales. European Journal of Agronomy, 2002, 16, 219-230.	4.1	32
48	Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica, 2008, 163, 435-447.	1.2	32
49	Development of wild barley-derived DArT markers and their integration into a barley consensus map. Molecular Breeding, 2011, 27, 77-92.	2.1	32
50	Genetic control of pre-heading phases in the Steptoe × Morex barley population under different conditions of photoperiod and temperature. Euphytica, 2012, 183, 303-321.	1.2	32
51	Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theoretical and Applied Genetics, 2004, 110, 116-125.	3.6	31
52	Genetic relationships between preharvest sprouting and dormancy in barley. Euphytica, 2009, 168, 331-345.	1.2	31
53	Mechanisms of Malt Extract Development in Barleys from Different European Regions: II. Effect of Barley Hordein Fractions on Malt Extract Yield. Journal of the Institute of Brewing, 2000, 106, 117-124.	2.3	30
54	Effects of Barley (<i>Hordeum Vulgare</i> L.) Variety and Growing Environment on Beer Flavor. Journal of the American Society of Brewing Chemists, 2017, 75, 345-353.	1.1	30

#	Article	IF	CITATIONS
55	Differential Adaptation of Complete and Substituted Triticale. Plant Breeding, 1993, 111, 113-119.	1.9	28
56	Building bridges: an integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32, 743-770.	2.1	28
57	A mutant induced in the malting barley cv Triumph with reduced dormancy and ABA response. Theoretical and Applied Genetics, 1999, 98, 347-355.	3.6	27
58	Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. European Journal of Agronomy, 2004, 20, 281-292.	4.1	27
59	Purple, high β-glucan, hulless barley as valuable ingredient for functional food. LWT - Food Science and Technology, 2020, 131, 109582.	5.2	26
60	Growth and yield responses of two contrasting barley cultivars in a Mediterranean environment. European Journal of Agronomy, 1995, 4, 317-326.	4.1	24
61	Primary Trisomics in Sugarbeet. I. Isolation and Morphological Characterization 1. Crop Science, 1986, 26, 243-249.	1.8	24
62	Growth and Final Weight of Central and Lateral Barley Grains under Mediterranean Conditions as Influenced by Sink Strength. Crop Science, 1998, 38, 84-89.	1.8	23
63	On the origin of Spanish two-rowed barleys. Theoretical and Applied Genetics, 1994, 87, 829-836.	3.6	22
64	RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity, 1999, 83, 551-559.	2.6	22
65	Quantitative genetic analysis of acid detergent fibre content in barley grain. Journal of Cereal Science, 2003, 38, 167-172.	3.7	21
66	Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Molecular Breeding, 2008, 22, 39-50.	2.1	21
67	Water Status Measurements of Excised Wheat Leaves: Position and Age Effects. Crop Science, 1991, 31, 1583-1588.	1.8	20
68	Zm <scp>PBF</scp> and Zm <scp>GAMYB</scp> transcription factors independently transactivate the promoter of the maize (<i>Zea mays</i>) βâ€carotene hydroxylase 2 gene. New Phytologist, 2019, 222, 793-804.	7.3	20
69	Agronomical and morphological differentiation among winter and spring triticales. Plant Breeding, 1995, 114, 413-416.	1.9	19
70	Malt Modification and its Effects on the Contributions of Barley Genotype to Beer Flavor. Journal of the American Society of Brewing Chemists, 2017, 75, 354-362.	1.1	19
71	Screening Durum Wheat Germplasm for Dry Growing Conditions: Morphological and Physiological Criteria. Crop Science, 1991, 31, 770-775.	1.8	18
72	Genetic variants of the trypsin inhibitor from barley endosperm show different inhibitory activities. Plant Science, 1993, 89, 23-29.	3.6	17

#	Article	IF	CITATIONS
73	Genetic characterization of a reciprocal translocation present in a widely grown barley variety. Molecular Breeding, 2012, 30, 1109-1119.	2.1	17
74	Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 2013, 8, 1.	1.0	17
75	Malting Behaviour of Barleys Grown in Canada and Spain as Related to Hordein and Enzyme Content. Journal of the Institute of Brewing, 2004, 110, 34-42.	2.3	15
76	Primary Trisomics in Sugarbeet. II. Cytological Identification 1. Crop Science, 1987, 27, 435-439.	1.8	15
77	Comparative mapping of the Oregon Wolfe Barley using doubled haploid lines derived from female and male gametes. Theoretical and Applied Genetics, 2011, 122, 1399-1410.	3.6	13
78	Genetic and Management Effects on Barley Yield and Phenology in the Mediterranean Basin. Frontiers in Plant Science, 2021, 12, 655406.	3.6	12
79	A centromeric region on chromosome 6(6H) affects dormancy in an induced mutant in barley. Journal of Experimental Botany, 2004, 56, 47-54.	4.8	11
80	Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breeding, 2005, 124, 546-550.	1.9	10
81	Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.		10
82	Quantitative phenotypical expression of three mutant genes in barley and the basis for defining an ideotype for Mediterranean environments. Theoretical and Applied Genetics, 1990, 80, 762-768.	3.6	9
83	Karyotype Analysis in Haploid Sugarbeet. Botanical Gazette, 1985, 146, 259-263.	0.6	8
84	Barley Tetrameric Inhibitor of Insect α-amylases. Characterization of an Allelic Variant of the BTAI-CMb Subunit. Journal of Cereal Science, 1993, 17, 107-113.	3.7	7
85	Bioactive Compounds and Antioxidant Capacity in Pearling Fractions of Hulled, Partially Hull-Less and Hull-Less Food Barley Genotypes. Foods, 2021, 10, 565.	4.3	7
86	Cytological identification of acrotrisomy in sugar beets. Journal of Heredity, 1985, 76, 227-228.	2.4	6
87	Effect of forage removal at the first detectable node stage on the growth of winter and spring triticale. Grass and Forage Science, 1996, 51, 170-179.	2.9	5
88	Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.		5
89	Impact of Rising Temperature in the Deposition Patterns of Bioactive Compounds in Field Grown Food Barley Grains. Plants, 2021, 10, 598.	3.5	4
90	Low responsiveness of six-rowed genotypes to androgenesis in barley does not have a pleiotropic basis. Genome, 2001, 44, 936-940.	2.0	4

#	Article	IF	CITATIONS
91	Postâ€anthesis thermal stress induces differential accumulation of bioactive compounds in fieldâ€grown barley. Journal of the Science of Food and Agriculture, 2021, 101, 6496-6504.	3.5	1
92	Agronomic effects of a reciprocal translocation in a widely grown Spanish barley variety. Euphytica, 2012, 185, 119-122.	1.2	0
93	BiotecnologÃa agrÃeola. Arbor, 2014, 190, a152.	0.3	0
94	Small Mesh-Bags within Industrial Malting Batches as a Simple Non-Expensive Alternative Micro-Malting Technique. Journal of the American Society of Brewing Chemists, 0, , 1-6.	1.1	0