List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020551/publications.pdf Version: 2024-02-01

		66343	39675
96	11,132	42	94
papers	citations	h-index	g-index
137	137	137	14299
all docs	docs citations	times ranked	citing authors

MARCO AIFUL

#	Article	IF	CITATIONS
1	The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020, 368, 395-400.	12.6	2,784
2	Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science, 2020, 368, 1481-1486.	12.6	942
3	Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 2020, 4, 964-971.	12.0	605
4	Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infectious Diseases, The, 2020, 20, 793-802.	9.1	541
5	Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 2021, 371, .	12.6	341
6	Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infectious Diseases, The, 2015, 15, 204-211.	9.1	226
7	The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 557-565.	2.6	223
8	Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 2010, 10, 190.	2.9	222
9	Measurability of the epidemic reproduction number in data-driven contact networks. Proceedings of the United States of America, 2018, 115, 12680-12685.	7.1	199
10	Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis. The Lancet Global Health, 2021, 9, e598-e609.	6.3	193
11	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 2018, 22, 13-21.	3.0	185
12	Modeling transmission of SARS-CoV-2 Omicron in China. Nature Medicine, 2022, 28, 1468-1475.	30.7	177
13	Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread. PLoS Computational Biology, 2012, 8, e1002673.	3.2	166
14	Inferring high-resolution human mixing patterns for disease modeling. Nature Communications, 2021, 12, 323.	12.8	161
15	The early phase of the COVID-19 epidemic in Lombardy, Italy. Epidemics, 2021, 37, 100528.	3.0	158
16	The Effect of Risk Perception on the 2009 H1N1 Pandemic Influenza Dynamics. PLoS ONE, 2011, 6, e16460.	2.5	152
17	Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios. PLoS ONE, 2008, 3, e1790.	2.5	143
18	Global, regional, and national estimates of target population sizes for covid-19 vaccination: descriptive study. BMJ, The, 2020, 371, m4704.	6.0	140

#	Article	IF	CITATIONS
19	Spontaneous behavioural changes in response to epidemics. Journal of Theoretical Biology, 2009, 260, 31-40.	1.7	127
20	Reactive school closure weakens the network of social interactions and reduces the spread of influenza. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13174-13181.	7.1	127
21	Association of Age With Likelihood of Developing Symptoms and Critical Disease Among Close Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy. JAMA Network Open, 2021, 4, e211085.	5.9	127
22	Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy. PLoS ONE, 2011, 6, e18860.	2.5	122
23	Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Eurosurveillance, 2020, 25, .	7.0	121
24	Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. Nature Communications, 2021, 12, 1533.	12.8	117
25	Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic. Mathematical Biosciences, 2012, 238, 80-89.	1.9	109
26	Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling. PLoS Computational Biology, 2011, 7, e1002205.	3.2	102
27	Disease burden and clinical severity of the first pandemic wave of COVID-19 in Wuhan, China. Nature Communications, 2020, 11, 5411.	12.8	84
28	Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nature Human Behaviour, 2021, 5, 1009-1020.	12.0	81
29	Retrospective analysis of the Italian exit strategy from COVID-19 lockdown. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	72
30	Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data. PLoS Computational Biology, 2010, 6, e1001021.	3.2	69
31	Perspectives on the Impact of Varicella Immunization on Herpes Zoster. A Model-Based Evaluation from Three European Countries. PLoS ONE, 2013, 8, e60732.	2.5	64
32	Impact of a Nationwide Lockdown on SARS-CoV-2 Transmissibility, Italy. Emerging Infectious Diseases, 2021, 27, 267-270.	4.3	64
33	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 2021, 600, 127-132.	27.8	61
34	Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings. BMC Medicine, 2015, 13, 49.	5.5	56
35	Estimating contact patterns relevant to the spread of infectious diseases in Russia. Journal of Theoretical Biology, 2017, 419, 1-7.	1.7	56
36	Who should be prioritized for COVID-19 vaccination in China? A descriptive study. BMC Medicine, 2021, 19, 45.	5.5	56

MARCO AJELLI

#	Article	IF	CITATIONS
37	Time-varying optimization of COVID-19 vaccine prioritization in the context of limited vaccination capacity. Nature Communications, 2021, 12, 4673.	12.8	56
38	Containing Ebola at the Source with Ring Vaccination. PLoS Neglected Tropical Diseases, 2016, 10, e0005093.	3.0	54
39	The impact of relaxing interventions on human contact patterns and SARS-CoV-2 transmission in China. Science Advances, 2021, 7, .	10.3	53
40	Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Eurosurveillance, 2020, 25, .	7.0	51
41	The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions. BMC Medicine, 2015, 13, 281.	5.5	50
42	Case Fatality Risk of the First Pandemic Wave of Coronavirus Disease 2019 (COVID-19) in China. Clinical Infectious Diseases, 2021, 73, e79-e85.	5.8	50
43	Seroprevalence of and Risk Factors Associated With SARS-CoV-2 Infection in Health Care Workers During the Early COVID-19 Pandemic in Italy. JAMA Network Open, 2021, 4, e2115699.	5.9	48
44	Potential short-term outcome of an uncontrolled COVID-19 epidemic in Lombardy, Italy, February to March 2020. Eurosurveillance, 2020, 25, .	7.0	47
45	Coinfection can trigger multiple pandemic waves. Journal of Theoretical Biology, 2008, 254, 499-507.	1.7	46
46	Impact of tiered restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. Nature Communications, 2021, 12, 4570.	12.8	45
47	The effect of COVID-19 vaccination in Italy and perspectives for living with the virus. Nature Communications, 2021, 12, 7272.	12.8	40
48	Model predictions and evaluation of possible control strategies for the 2009 A/H1N1v influenza pandemic in Italy. Epidemiology and Infection, 2011, 139, 68-79.	2.1	39
49	Model-Based Comprehensive Analysis of School Closure Policies for Mitigating Influenza Epidemics and Pandemics. PLoS Computational Biology, 2016, 12, e1004681.	3.2	39
50	Social contact patterns and implications for infectious disease transmission – a systematic review and meta-analysis of contact surveys. ELife, 2021, 10, .	6.0	36
51	Hope-Simpson's Progressive Immunity Hypothesis as a Possible Explanation for Herpes Zoster Incidence Data. American Journal of Epidemiology, 2013, 177, 1134-1142.	3.4	35
52	Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	35
53	Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Neglected Tropical Diseases, 2017, 11, e0005851.	3.0	34
54	Detecting critical slowing down in high-dimensional epidemiological systems. PLoS Computational Biology, 2020, 16, e1007679.	3.2	34

#	Article	IF	CITATIONS
55	Pressure on the Health-Care System and Intensive Care Utilization During the COVID-19 Outbreak in the Lombardy Region of Italy: A Retrospective Observational Study in 43,538 Hospitalized Patients. American Journal of Epidemiology, 2022, 191, 137-146.	3.4	34
56	Intrinsic generation time of the SARS-CoV-2 Omicron variant: An observational study of household transmission. Lancet Regional Health - Europe, The, 2022, 19, 100446.	5.6	34
57	Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting. Journal of Theoretical Biology, 2011, 289, 197-205.	1.7	32
58	The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Scientific Reports, 2014, 4, 7218.	3.3	32
59	Containing the accidental laboratory escape of potential pandemic influenza viruses. BMC Medicine, 2013, 11, 252.	5.5	30
60	The impact of demographic changes on the epidemiology of herpes zoster: Spain as a case study. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142509.	2.6	30
61	Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Medicine, 2016, 14, 130.	5.5	30
62	Deciphering the relative weights of demographic transition and vaccination in the decrease of measles incidence in Italy. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132676.	2.6	28
63	Transmission Potential and Design of Adequate Control Measures for Marburg Hemorrhagic Fever. PLoS ONE, 2012, 7, e50948.	2.5	28
64	Age-prioritized use of antivirals during an influenza pandemic. BMC Infectious Diseases, 2009, 9, 117.	2.9	27
65	An individual-based model of hepatitis A transmission. Journal of Theoretical Biology, 2009, 259, 478-488.	1.7	27
66	Basic mathematical models for the temporal dynamics of HAV in medium-endemicity Italian areas. Vaccine, 2008, 26, 1697-1707.	3.8	26
67	School closure policies at municipality level for mitigating influenza spread: a model-based evaluation. BMC Infectious Diseases, 2016, 16, 576.	2.9	22
68	The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling. PLoS ONE, 2008, 3, e1519.	2.5	21
69	Mosquito Adaptation to the Extreme Habitats of Urban Construction Sites. Trends in Parasitology, 2019, 35, 607-614.	3.3	20
70	Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021. Eurosurveillance, 2022, 27, .	7.0	20
71	The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation. Epidemics, 2018, 22, 3-12.	3.0	19
72	Human mobility and population heterogeneity in the spread of an epidemic. Procedia Computer Science, 2010, 1, 2237-2244.	2.0	17

#	Article	IF	CITATIONS
73	Pandemic Influenza A/H1N1pdm in Italy: Age, Risk and Population Susceptibility. PLoS ONE, 2013, 8, e74785.	2.5	17
74	Revisiting the guidelines for ending isolation for COVID-19 patients. ELife, 2021, 10, .	6.0	17
75	The COVID-19 outbreak in Sichuan, China: Epidemiology and impact of interventions. PLoS Computational Biology, 2020, 16, e1008467.	3.2	17
76	Model-based evaluation of alternative reactive class closure strategies against COVID-19. Nature Communications, 2022, 13, 322.	12.8	17
77	Healthâ€seeking behaviors of patients with acute respiratory infections during the outbreak of novel coronavirus disease 2019 in Wuhan, China. Influenza and Other Respiratory Viruses, 2021, 15, 188-194.	3.4	14
78	Modeling the interplay between demography, social contact patterns, and SARS-CoV-2 transmission in the South West Shewa Zone of Oromia Region, Ethiopia. BMC Medicine, 2021, 19, 89.	5.5	13
79	Effectiveness of contact investigations for tuberculosis control in Arkansas. Journal of Theoretical Biology, 2015, 380, 238-246.	1.7	12
80	Modeling mosquito-borne diseases in complex urban environments. Acta Tropica, 2017, 176, 332-334.	2.0	11
81	Characterizing the transmission patterns of seasonal influenza in Italy: lessons from the last decade. BMC Public Health, 2022, 22, 19.	2.9	11
82	The New Quadrivalent Adjuvanted Influenza Vaccine for the Italian Elderly: A Health Technology Assessment. International Journal of Environmental Research and Public Health, 2022, 19, 4166.	2.6	11
83	Investigating vaccine-induced immunity and its effect in mitigating SARS-CoV-2 epidemics in China. BMC Medicine, 2022, 20, 37.	5.5	10
84	Detecting a Surprisingly Low Transmission Distance in the Early Phase of the 2009 Influenza Pandemic. Scientific Reports, 2017, 7, 12324.	3.3	9
85	Parental vaccination to reduce measles immunity gaps in Italy. ELife, 2019, 8, .	6.0	8
86	A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden. Epidemics, 2021, 37, 100530.	3.0	8
87	Epidemiology and transmission dynamics of the 1918–19 pandemic influenza in Florence, Italy. Vaccine, 2011, 29, B27-B32.	3.8	7
88	Investigating the relationship between interventions, contact patterns, and SARS-CoV-2Atransmissibility. Epidemics, 2022, 40, 100601.	3.0	7
89	Spatiotemporal dynamics of viral hepatitis A in Italy. Theoretical Population Biology, 2011, 79, 1-11.	1.1	6
90	Risk of Symptomatic Infection During a Second Coronavirus Disease 2019 Wave in Severe Acute Respiratory Syndrome Coronavirus 2–Seropositive Individuals. Clinical Infectious Diseases, 2022, 74, 893-896.	5.8	5

#	Article	IF	CITATIONS
91	Assessing the transition of COVID-19 burden towards the young population while vaccines are rolled out in China*. Emerging Microbes and Infections, 2022, 11, 1205-1214.	6.5	5
92	Anatomy of the first six months of COVID-19 vaccination campaign in Italy. PLoS Computational Biology, 2022, 18, e1010146.	3.2	5
93	Uncoordinated Human Responses During Epidemic Outbreaks. , 2013, , 79-91.		3
94	Quantifying human mixing patterns in Chinese provinces outside Hubei after the 2020 lockdown was lifted. BMC Infectious Diseases, 2022, 22, .	2.9	2
95	Estimating measles transmission potential in Italy over the period 2010-2011. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 351-6.	0.4	1
96	Behavioral Changes and Adaptation Induced by Epidemics. , 2015, , 155-175.		0