
Nathan Barros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 2011, 4, 593-596.	12.9	600
2	Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience, 2016, 66, 949-964.	4.9	564
3	Cross continental increase in methane ebullition under climate change. Nature Communications, 2017, 8, 1682.	12.8	146
4	Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems, 2018, 21, 1058-1071.	3.4	145
5	Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications, 2019, 10, 4281.	12.8	126
6	Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquatic Sciences, 2010, 72, 283-293.	1.5	92
7	Clobal CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 2020, 11, 2126.	12.8	73
8	Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnology and Oceanography, 2019, 64, 2129-2139.	3.1	70
9	Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environmental Research Letters, 2015, 10, 124019.	5.2	65
10	Spatially Resolved Measurements of CO ₂ and CH ₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & Technology, 2018, 52, 607-615.	10.0	65
11	Hydroelectric carbon sequestration. Nature Geoscience, 2012, 5, 838-840.	12.9	64
12	High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir. Frontiers in Microbiology, 2016, 7, 717.	3.5	63
13	Reducing adverse impacts of Amazon hydropower expansion. Science, 2022, 375, 753-760.	12.6	60
14	Global regulation of methane emission from natural lakes. Scientific Reports, 2019, 9, 255.	3.3	59
15	A global trend of caffeine consumption over time and related-environmental impacts. Environmental Pollution, 2020, 256, 113343.	7.5	57
16	Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil. Chemosphere, 2019, 215, 753-757.	8.2	46
17	Extreme drought boosts CO ₂ and CH ₄ emissions from reservoir drawdown areas. Inland Waters, 2018, 8, 329-340.	2.2	44
18	Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy, 2013, 58, 109-116.	8.8	42

NATHAN BARROS

#	Article	IF	CITATIONS
19	Extreme floods increase CO ₂ outgassing from a large Amazonian river. Limnology and Oceanography, 2017, 62, 989-999.	3.1	37
20	Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. Science of the Total Environment, 2020, 748, 141247.	8.0	35
21	Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography, 2020, 65, 1623-1634.	3.1	32
22	Hydropeaking Operations of Two Run-of-River Mega-Dams Alter Downstream Hydrology of the Largest Amazon Tributary. Frontiers in Environmental Science, 2020, 8, .	3.3	31
23	Limnological effects of a large Amazonian run-of-river dam on the main river and drowned tributary valleys. Scientific Reports, 2019, 9, 16846.	3.3	30
24	Floating solar power could help fight climate change — let's get it right. Nature, 2022, 606, 246-249.	27.8	27
25	Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. Aquatic Sciences, 2019, 81, 1.	1.5	25
26	Virus-Bacterium Coupling Driven by both Turbidity and Hydrodynamics in an Amazonian Floodplain Lake. Applied and Environmental Microbiology, 2010, 76, 7194-7201.	3.1	22
27	Sediment drying-rewetting cycles enhance greenhouse gas emissions, nutrient and trace element release, and promote water cytogenotoxicity. PLoS ONE, 2020, 15, e0231082.	2.5	18
28	Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming. Inland Waters, 2015, 5, 275-282.	2.2	17
29	Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River. Frontiers in Microbiology, 2015, 6, 158.	3.5	17
30	Emissions from Amazonian dams. Nature Climate Change, 2013, 3, 1005-1005.	18.8	15
31	Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Global Biogeochemical Cycles, 2021, 35, e2020GB006717.	4.9	15
32	Hotspots of Diffusive CO ₂ and CH ₄ Emission From Tropical Reservoirs Shift Through Time. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006014.	3.0	14
33	Cross-continental importance of CH4 emissions from dry inland-waters. Science of the Total Environment, 2022, 814, 151925.	8.0	13
34	Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?. , 2012, , .		12
35	Significant changes in water pCO2 caused by turbulence from waterfalls. Limnologica, 2017, 62, 1-4.	1.5	12
36	Environmental Risk of Metal Contamination in Sediments of Tropical Reservoirs. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 292-301.	2.7	10

NATHAN BARROS

#	Article	IF	CITATIONS
37	Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River. Archives of Environmental Contamination and Toxicology, 2021, 81, 142-154.	4.1	10
38	Water pollution: one of the main Limnology challenges in the Anthropocene. Acta Limnologica Brasiliensia, 0, 31, .	0.4	10
39	Agricultural activity enhances CO2 and CH4 emissions after sediment rewetting in a tropical semiarid reservoir. Hydrobiologia, 2022, 849, 3979-3993.	2.0	4
40	Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish. Ecotoxicology, 2022, 31, 161-167.	2.4	4
41	Out of gas: re-flooding does not boost carbon emissions from drawdown areas in semiarid reservoirs after prolonged droughts. Aquatic Sciences, 2022, 84, 1.	1.5	3
42	Micropollutants in four Brazilian water reservoirs. Limnologica, 2021, 90, 125902.	1.5	2
43	Not all viruses in nature are human enemies: a perspective on aquatic virus ecology in Brazil. Acta Limnologica Brasiliensia, 0, 32, .	0.4	1