Stefano Mancuso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8020034/publications.pdf

Version: 2024-02-01

205 papers 8,419 citations

44069 48 h-index 80 g-index

208 all docs 208 docs citations

times ranked

208

8172 citing authors

#	Article	IF	CITATIONS
1	Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 2006, 11, 413-419.	8.8	344
2	Root apex transition zone: a signalling–response nexus in the root. Trends in Plant Science, 2010, 15, 402-408.	8.8	245
3	<i>Arabidopsis</i> Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. Plant Cell, 2009, 20, 3374-3388.	6.6	206
4	MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Letters, 2005, 579, 5399-5406.	2.8	202
5	Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 2014, 175, 63-72.	2.0	191
6	Immunophilin-like TWISTED DWARF1 Modulates Auxin Efflux Activities of Arabidopsis P-glycoproteins*. Journal of Biological Chemistry, 2006, 281, 30603-30612.	3.4	181
7	Towards understanding plant bioacoustics. Trends in Plant Science, 2012, 17, 323-325.	8.8	175
8	Modulation of P-glycoproteins by Auxin Transport Inhibitors Is Mediated by Interaction with Immunophilins. Journal of Biological Chemistry, 2008, 283, 21817-21826.	3.4	162
9	Assessing the role of root plasma membrane and tonoplast Na ⁺ /H ⁺ exchangers in salinity tolerance in wheat: <i>in planta</i> quantification methods. Plant, Cell and Environment, 2011, 34, 947-961.	5.7	159
10	Cell-Type-Specific H ⁺ -ATPase Activity in Root Tissues Enables K ⁺ Retention and Mediates Acclimation of Barley (<i>Hordeum vulgare</i>) to Salinity Stress. Plant Physiology, 2016, 172, 2445-2458.	4.8	158
11	Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Analytical Biochemistry, 2005, 341, 344-351.	2.4	153
12	Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 2008, 72, 1481-1490.	8.2	149
13	The â€~root-brain' hypothesis of Charles and Francis Darwin. Plant Signaling and Behavior, 2009, 4, 1121-1127.	2.4	138
14	Spatiotemporal dynamics of the electrical network activity in the root apex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4048-4053.	7.1	118
15	The network of plants volatile organic compounds. Scientific Reports, 2017, 7, 11050.	3.3	118
16	Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics. Journal of Biological Chemistry, 2010, 285, 23309-23317.	3.4	114
17	Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO Journal, 2012, 31, 2965-2980.	7.8	114
18	The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in <i>Arabidopsis</i> Root Phototropism. Plant Cell, 2012, 24, 551-565.	6.6	113

#	Article	IF	CITATIONS
19	Root Apex Transition Zone As Oscillatory Zone. Frontiers in Plant Science, 2013, 4, 354.	3.6	108
20	Nectar in Plant–Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. Frontiers in Plant Science, 2018, 9, 1063.	3.6	103
21	Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signaling and Behavior, 2011, 6, 1460-1464.	2.4	99
22	Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany, 2012, 84, 44-51.	4.2	96
23	Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Functional Plant Biology, 1999, 26, 55.	2.1	91
24	Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices. Plant Signaling and Behavior, 2006, 1, 122-133.	2.4	91
25	TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics. Plant Cell, 2016, 28, 930-948.	6.6	88
26	On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). Journal of Experimental Botany, 2011, 62, 1991-2000.	4.8	87
27	Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Frontiers in Plant Science, 2015, 6, 71.	3.6	86
28	PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food Chemistry, 2016, 192, 75-81.	8.2	86
29	Signalling via glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology, 2016, 43, 1.	2.1	85
30	Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany, 2006, 57, 171-184.	4.8	83
31	<i>Arabidopsis</i> TWISTED DWARF1 Functionally Interacts with Auxin Exporter ABCB1 on the Root Plasma Membrane Â. Plant Cell, 2013, 25, 202-214.	6.6	83
32	Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. Plant and Cell Physiology, 2010, 51, 422-434.	3.1	80
33	Root vacuolar Na ⁺ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant Journal, 2019, 100, 55-67.	5.7	80
34	Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany, 2018, 69, 3987-4001.	4.8	73
35	Deep evolutionary origins of neurobiology: Turning the essence of 'neural' upside-down. Communicative and Integrative Biology, 2009, 2, 60-65.	1.4	71
36	Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Scientific Reports, 2019, 9, 1093.	3.3	64

#	Article	IF	Citations
37	Phospholipase Dî¶2 Drives Vesicular Secretion of Auxin for Its Polar Cell-Cell Transport in the Transition Zone of the Root Apex. Plant Signaling and Behavior, 2007, 2, 240-244.	2.4	62
38	Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Science Bulletin, 2008, 53, 2480-2487.	9.0	62
39	Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons. Scientific Reports, 2015, 5, 12629.	3.3	61
40	Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta, 2002, 214, 767-774.	3.2	57
41	The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development (Cambridge), 2015, 142, 712-21.	2.5	57
42	Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma, 2019, 344, 127-136.	5.1	57
43	Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive tree (Olea europaeaL.) plants. Plant, Cell and Environment, 2000, 23, 291-299.	5.7	56
44	Local Root Apex Hypoxia Induces NO-Mediated Hypoxic Acclimation of the Entire Root. Plant and Cell Physiology, 2012, 53, 912-920.	3.1	55
45	Soil volatile analysis by proton transfer reaction-time of flight mass spectrometry (PTR-TOF-MS). Applied Soil Ecology, 2015, 86, 182-191.	4.3	55
46	Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior. Frontiers in Plant Science, 2016, 7, 835.	3.6	54
47	Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agricultural Water Management, 2017, 187, 37-46.	5.6	54
48	Exploring strategies for classification of external stimuli using statistical features of the plant electrical response. Journal of the Royal Society Interface, 2015, 12, 20141225.	3.4	53
49	Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cognitive Processing, 2009, 10, 3-7.	1.4	51
50	Swarm intelligence in plant roots. Trends in Ecology and Evolution, 2010, 25, 682-683.	8.7	51
51	Sequential depolarization of root cortical and stelar cells induced by an acute salt shock – implications for Na ⁺ and K ⁺ transport into xylem vessels. Plant, Cell and Environment, 2011, 34, 859-869.	5.7	51
52	Effect of Hypoxic Acclimation on Anoxia Tolerance in Vitis Roots: Response of Metabolic Activity and K+ Fluxes. Plant and Cell Physiology, 2011, 52, 1107-1116.	3.1	50
53	Photosynthesizing on metal excess: Copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Science, 2015, 232, 67-76.	3.6	50
54	Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. Journal of Applied Phycology, 2008, 20, 177-182.	2.8	49

#	Article	IF	Citations
55	Acclimation improves salt stress tolerance in Zea mays plants. Journal of Plant Physiology, 2016, 201, 1-8.	3.5	49
56	Friend or Foe? Chloride Patterning in Halophytes. Trends in Plant Science, 2019, 24, 142-151.	8.8	49
57	Response to Alpi et al.: Plant neurobiology: the gain is more than the name. Trends in Plant Science, 2007, 12, 285-286.	8.8	48
58	Out of Sight but Not out of Mind: Alternative Means of Communication in Plants. PLoS ONE, 2012, 7, e37382.	2.5	48
59	A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants. Planta, 2000, 211, 384-389.	3.2	46
60	Phytoremediation of sewage sludge contaminated by trace elements and organic compounds. Environmental Research, 2018, 164, 356-366.	7. 5	46
61	Airborne signals synchronize the defenses of neighboring plants in response to touch. Journal of Experimental Botany, 2019, 70, 691-700.	4.8	46
62	Seasonal dynamics of electrical impedance parameters in shoots and leaves related to rooting ability of olive (Olea europea) cuttings. Tree Physiology, 1999, 19, 95-101.	3.1	45
63	Swarming Behavior in Plant Roots. PLoS ONE, 2012, 7, e29759.	2.5	45
64	Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental and Experimental Botany, 2012, 81, 11-17.	4.2	45
65	Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. Journal of Experimental Botany, 2014, 65, 1361-1375.	4.8	44
66	D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2â€mediated auxin transport network in the root apex. Plant Journal, 2008, 55, 709-717.	5.7	43
67	Plants and Animals: Convergent Evolution in Action?. Signaling and Communication in Plants, 2009, , 285-301.	0.7	43
68	Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate. Environmental Science and Pollution Research, 2018, 25, 9114-9131.	5.3	43
69	Actin Turnover-Mediated Gravity Response in Maize Root Apices. Plant Signaling and Behavior, 2006, 1, 52-58.	2.4	42
70	Postâ€transcriptional regulation of GORK channels by superoxide anion contributes to increases in outwardâ€rectifying K + currents. New Phytologist, 2013, 198, 1039-1048.	7.3	42
71	Extrafloral-nectar-based partner manipulation in plant–ant relationships. AoB PLANTS, 2015, 7, .	2.3	42
72	Seawater potential use in soilless culture: A review. Scientia Horticulturae, 2019, 249, 199-207.	3.6	42

#	Article	IF	CITATIONS
73	Adaptative Response of Vitis Root to Anoxia. Plant and Cell Physiology, 2006, 47, 401-409.	3.1	41
74	Electrical spiking in bacterial biofilms. Journal of the Royal Society Interface, 2015, 12, 20141036.	3.4	38
75	Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Annals of Botany, 2018, 122, 747-756.	2.9	38
76	Different pathways of the oxygen supply in the sapwood of young Olea europaea trees. Planta, 2003, 216, 1028-1033.	3.2	37
77	Plant anesthesia supports similarities between animals and plants. Plant Signaling and Behavior, 2014, 9, e27886.	2.4	37
78	Forward and inverse modelling approaches for prediction of light stimulus from electrophysiological response in plants. Measurement: Journal of the International Measurement Confederation, 2014, 53, 101-116.	5.0	37
79	Understanding of anesthesia – Why consciousness is essential for life and not based on genes. Communicative and Integrative Biology, 2016, 9, e1238118.	1.4	37
80	Root phonotropism: Early signalling events following sound perception in Arabidopsis roots. Plant Science, 2017, 264, 9-15.	3.6	37
81	Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. Journal of Experimental Botany, 2014, 65, 4931-4942.	4.8	36
82	Classâ€modeling approach to <scp>PTRâ€TOFMS</scp> data: a peppers case study. Journal of the Science of Food and Agriculture, 2015, 95, 1757-1763.	3.5	35
83	Plant Neurobiology as a Paradigm Shift Not Only in the Plant Sciences. Plant Signaling and Behavior, 2007, 2, 205-207.	2.4	34
84	Induction of priming by salt stress in neighboring plants. Environmental and Experimental Botany, 2018, 147, 261-270.	4.2	34
85	Plants, climate and humans. EMBO Reports, 2020, 21, e50109.	4.5	34
86	AGD5 is a GTPase-activating protein at the trans-Golgi network. Plant Journal, 2010, 64, 790-799.	5.7	33
87	Artificial neural networks as a tool for plant identification: a case study on Vietnamese tea accessions. Euphytica, 2009, 166, 411-421.	1.2	32
88	Vision in Plants via Plant-Specific Ocelli?. Trends in Plant Science, 2016, 21, 727-730.	8.8	32
89	Covering the different steps of the coffee processing: Can headspace VOC emissions be exploited to successfully distinguish between Arabica and Robusta?. Food Chemistry, 2017, 237, 257-263.	8.2	32
90	Neurobiological View of Plants and Their Body Plan. , 2006, , 19-35.		32

#	Article	IF	Citations
91	Acoustic and magnetic communication in plants. Plant Signaling and Behavior, 2012, 7, 1346-1348.	2.4	31
92	Consciousness Facilitates Plant Behavior. Trends in Plant Science, 2020, 25, 216-217.	8.8	31
93	Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte) Tj ETQq1 1 0. Function, 2009, 23, 159-167.	784314 rg 1.9	gBT /Overlock 30
94	Influence of the Application Renewal of Glutamate and Tartrate on Cd, Cu, Pb and Zn Distribution Between Contaminated Soil and <i>Paulownia Tomentosa </i> Isin a Pilot-Scale Assisted Phytoremediation Study. International Journal of Phytoremediation, 2010, 13, 1-17.	3.1	30
95	Vesicular secretion of auxin. Plant Signaling and Behavior, 2008, 3, 254-256.	2.4	29
96	The plant as a biomechatronic system. Plant Signaling and Behavior, 2010, 5, 90-93.	2.4	29
97	PAMP Activity of Cerato-Platanin during Plant Interaction: An -Omic Approach. International Journal of Molecular Sciences, 2016, 17, 866.	4.1	29
98	Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?. Frontiers in Genetics, 2017, 8, 6.	2.3	29
99	Root based responses account for Psidium guajava survival at high nickel concentration. Journal of Plant Physiology, 2015, 174, 137-146.	3.5	28
100	Correlation Between Volatile Compounds and Spiciness in Domesticated and Wild Fresh Chili Peppers. Food and Bioprocess Technology, 2019, 12, 1366-1380.	4.7	28
101	Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. Journal of Experimental Botany, 2010, 61, 1711-1717.	4.8	27
102	Influence of Long-Term Application of Green Waste Compost on Soil Characteristics and Growth, Yield and Quality of Grape (Vitis viniferal.). Compost Science and Utilization, 2012, 20, 29-33.	1.2	27
103	<scp>PTRâ€TOFâ€MS</scp> analysis of volatile compounds in olive fruits. Journal of the Science of Food and Agriculture, 2015, 95, 1428-1434.	3.5	27
104	Environmental conditions influence the biochemical properties of the fruiting bodies of Tuber magnatum Pico. Scientific Reports, 2018, 8, 7243.	3.3	27
105	Ion channels in plants. Plant Signaling and Behavior, 2013, 8, e23009.	2.4	26
106	Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta, 2015, 242, 847-857.	3.2	26
107	Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar. Tree Physiology, 2017, 37, 380-388.	3.1	26
108	Plant neurobiology. Plant Signaling and Behavior, 2009, 4, 475-476.	2.4	25

#	Article	IF	Citations
109	The Electrical Network of Maize Root Apex is Gravity Dependent. Scientific Reports, 2015, 5, 7730.	3.3	24
110	Growing spinach (Spinacia oleracea) with different seawater concentrations: Effects on fresh, boiled and steamed leaves. Scientia Horticulturae, 2019, 256, 108540.	3.6	23
111	BIOKIS: A Model Payload for Multidisciplinary Experiments in Microgravity. Microgravity Science and Technology, 2012, 24, 397-409.	1.4	22
112	Precipitation affects plant communication and defense. Ecology, 2017, 98, 1693-1699.	3.2	21
113	Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 2016, 176, 255-262.	5.6	20
114	Individuality, self and sociality of vascular plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190760.	4.0	20
115	Microorganism and filamentous fungi drive evolution of plant synapses. Frontiers in Cellular and Infection Microbiology, 2013, 3, 44.	3.9	19
116	Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters. Plant Systematics and Evolution, 2008, 270, 95-108.	0.9	18
117	Oxidative Stress and NO Signalling in the Root Apex as an Early Response to Changes in Gravity Conditions. BioMed Research International, 2014, 2014, 1-10.	1.9	18
118	Nashi or Williams pear fruits? Use of volatile organic compounds, physicochemical parameters, and sensory evaluation to understand the consumer's preference. European Food Research and Technology, 2017, 243, 1917-1931.	3.3	18
119	Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. Journal of Environmental Management, 2021, 277, 111454.	7.8	18
120	Root potassium and hydrogen flux rates as potential indicators of plant response to zinc, copper and nickel stress. Environmental and Experimental Botany, 2017, 143, 38-50.	4.2	17
121	Electrical signaling and photosynthesis. Plant Signaling and Behavior, 2011, 6, 840-842.	2.4	16
122	Comparison of decision tree based classification strategies to detect external chemical stimuli from raw and filtered plant electrical response. Sensors and Actuators B: Chemical, 2017, 249, 278-295.	7.8	16
123	Potassium fluxes and reactive oxygen species production as potential indicators of salt tolerance in Cucumis sativus. Functional Plant Biology, 2016, 43, 1016.	2.1	15
124	Aromatic and proteomic analyses corroborate the distinction between Mediterranean landraces and modern varieties of durum wheat. Scientific Reports, 2016, 6, 34619.	3.3	15
125	Plant Ocelli for Visually Guided Plant Behavior. Trends in Plant Science, 2017, 22, 5-6.	8.8	15
126	A leaf-based back propagation neural network for oleander (Nerium oleander L.) cultivar identification. Computers and Electronics in Agriculture, 2017, 142, 515-520.	7.7	15

#	Article	IF	Citations
127	Activation of plasma membrane H+-ATPases participates in dormancy alleviation in sunflower seeds. Plant Science, 2019, 280, 408-415.	3.6	15
128	Metabolism regulation during salt exposure in the halophyte Cakile maritima. Environmental and Experimental Botany, 2020, 177, 104075.	4.2	15
129	Tuberomics: a molecular profiling for the adaption of edible fungi (Tuber magnatum Pico) to different natural environments. BMC Genomics, 2020, 21, 90.	2.8	15
130	Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress. Environmental Pollution, 2016, 210, 282-292.	7.5	14
131	Sensory, spectrometric (PTR–ToF–MS) and chemometric analyses to distinguish extra virgin from virgin olive oils. Journal of Food Science and Technology, 2017, 54, 1368-1376.	2.8	14
132	Resource availability affects kin selection in two cultivars of Pisum sativum. Plant Growth Regulation, 2020, 90, 321-329.	3.4	14
133	Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context. Agricultural Water Management, 2020, 240, 106261.	5.6	14
134	Nutation in Plants. , 2015, , 19-34.		14
135	Electrochemical behaviour of a Cu/CuSe microelectrode and its application in detecting temporal and spatial localisation of copper(II) fluxes along Olea europaea roots. Journal of Solid State Electrochemistry, 2000, 4, 325-329.	2.5	13
136	Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in <i>Callistemon </i> Air and <i>Grevillea </i> Air spp Journal of Horticultural Science and Biotechnology, 2004, 79, 627-632.	1.9	13
137	On plant roots logical gates. BioSystems, 2017, 156-157, 40-45.	2.0	13
138	Investigation of root signaling under heterogeneous salt stress: A case study for Cucumis sativus L Environmental and Experimental Botany, 2017, 143, 20-28.	4.2	13
139	Stem electrical properties associated with water stress conditions in olive tree. Agricultural Water Management, 2020, 234, 106109.	5.6	13
140	Computers from Plants We Never Made: Speculations. Emergence, Complexity and Computation, 2018, , 357-387.	0.3	13
141	Discrimination and identification of morphotypes of <i>Banksia integrifolia</i> (Proteaceae) by an Artificial Neural Network (ANN), based on morphological and fractal parameters of leaves and flowers. Taxon, 2009, 58, 925-933.	0.7	12
142	Polyphenols and aromatic volatile compounds in biodynamic and conventional â€~Golden Delicious' apples (Malus domestica Bork.). European Food Research and Technology, 2017, 243, 1519-1531.	3.3	12
143	Evaluation of Composted Green Waste In Ornamental Container-Grown Plants: Effects on Growth and Plant Water Relations. Compost Science and Utilization, 2007, 15, 283-287.	1.2	11
144	Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo. Communicative and Integrative Biology, 2012, 5, 519-526.	1.4	11

#	Article	IF	Citations
145	Al-based hyperspectral and VOCs assessment approach to identify adulterated extra virgin olive oil. European Food Research and Technology, 2021, 247, 1013-1022.	3.3	11
146	Nutation in Plants. , 2007, , 77-90.		10
147	Protection of tobacco cells from oxidative copper toxicity by catalytically active metal-binding DNA oligomers. Journal of Experimental Botany, 2014, 65, 1391-1402.	4.8	10
148	Synaptic view of eukaryotic cell. International Journal of General Systems, 2014, 43, 740-756.	2.5	10
149	Smelling the metal: Volatile organic compound emission under Zn excess in the mint Tetradenia riparia. Plant Science, 2018, 271, 1-8.	3.6	10
150	Algae and Bioguano as promising source of organic fertilizers. Journal of Applied Phycology, 2020, 32, 3971-3981.	2.8	10
151	Early responses to salt stress in quinoa genotypes with opposite behavior. Physiologia Plantarum, 2021, 173, 1392-1420.	5.2	10
152	Drift removal in plant electrical signals via IIR filtering using wavelet energy. Computers and Electronics in Agriculture, 2015, 118, 15-23.	7.7	9
153	Role of Ion Transporters in Salinity Resistance in Plants. Environmental Control in Biology, 2016, 54, 1-6.	0.7	9
154	Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia. Scientific Reports, 2016, 6, 24989.	3.3	9
155	Trace element partitioning in a poplar phytoextraction stand in relation to stem size. Journal of Environmental Management, 2019, 247, 688-697.	7.8	9
156	Split-root investigation of the physiological response to heterogeneous elevated Zn exposure in poplar and willow. Environmental and Experimental Botany, 2021, 183, 104347.	4.2	9
157	Modelling botanical biofiltration of indoor air streams contaminated by volatile organic compounds. Journal of Hazardous Materials, 2022, 422, 126875.	12.4	9
158	De novo post-illumination monoterpene burst in Quercus ilex (holm oak). Planta, 2017, 245, 459-465.	3.2	8
159	Oxygen Transport in the Sapwood of Trees. , 2010, , 61-75.		8
160	Stalk cell polar ion transport provide for bladderâ€based salinity tolerance in <i>Chenopodium quinoa</i> . New Phytologist, 2022, 235, 1822-1835.	7.3	8
161	Plant shoots exhibit synchronized oscillatory motions. Communicative and Integrative Biology, 2016, 9, e1238117.	1.4	7
162	Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. Signaling and Communication in Plants, 2018, , 51-77.	0.7	7

#	Article	IF	CITATIONS
163	Substantial Evidence for Auxin Secretory Vesicles. Plant Physiology, 2018, 176, 2586-2587.	4.8	7
164	The Response of Halophyte (Tetragonia tetragonioides (Pallas) Kuntz.) and Glycophyte (Lactuca sativa) Tj ETQq0 Applied Sciences (Switzerland), 2021, 11, 6336.	0 0 rgBT / 2.5	Overlock 10 7
165	Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Frontiers in Microbiology, 2022, 13, .	3.5	7
166	Applications of Confocal Microscopy in the Study of Root Apparatus. , 2012, , 93-108.		6
167	Origin of Polar Order in Dense Suspensions of Phototactic Micro-Swimmers. PLoS ONE, 2012, 7, e38895.	2.5	6
168	Smart solutions from the plant kingdom. Bioinspiration and Biomimetics, 2013, 8, 020301.	2.9	6
169	Multivariate Approaches to Electronic Nose and PTR–TOF–MS Technologies in Agro-Food Products. , 2016, , 73-82.		6
170	Fruit aroma and sensorial characteristics of traditional and innovative Japanese plum (Prunus) Tj ETQq0 0 0 rgBT /	Ogerlock	10 ₆ Tf 50 462
171	Volatile organic compound emission and biochemical properties of degraded Ultisols ameliorated by no tillage and liming. Pedosphere, 2020, 30, 597-606.	4.0	6
172	Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. Plant Signaling and Behavior, 2021, 16, 2004769.	2.4	6
173	Gravity Affects the Closure of the Traps inDionaea muscipula. BioMed Research International, 2014, 2014, 1-5.	1.9	5
174	Awaiting better times: A quiescence response and adventitious root primordia formation prolong survival under cadmium stress in Tetradenia riparia (Hochst.) Codd. Environmental and Experimental Botany, 2016, 130, 1-10.	4.2	5
175	Networks of plants: how to measure similarity in vegetable species. Scientific Reports, 2016, 6, 27077.	3.3	5
176	Volatome analysis approach for the taxonomic classification of tree exudate collection using Proton Transfer Reaction Time of Flight Mass Spectrometry. Flavour and Fragrance Journal, 2018, 33, 245-262.	2.6	5
177	Are Peach Cultivars Used in Conventional Long Food Supply Chains Suitable for the High-Quality Short Markets?. Foods, 2021, 10, 1253.	4.3	5
178	Self-burial Mechanism of Erodium cicutarium and Its Potential Application for Subsurface Exploration. Lecture Notes in Computer Science, 2012, , 384-385.	1.3	5
179	The fractal spectrum of leaf colour as a tool for measuring frost hardiness in plants. Journal of Horticultural Science and Biotechnology, 2003, 78, 610-616.	1.9	4
180	Phyllometric parameters and artificial neural networks for the identification of Banksia accessions. Australian Systematic Botany, 2009, 22, 31.	0.9	4

#	Article	lF	CITATIONS
181	The Vibrating Probe Technique in the Study of Root Physiology Under Stress., 2012,, 67-81.		4
182	Ozone-induced caspase-like activities are dependent on early ion channel regulations and ROS generation inArabidopsis thalianacells. Plant Signaling and Behavior, 2013, 8, e25170.	2.4	4
183	Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals. Communicative and Integrative Biology, 2015, 8, e1000710.	1.4	4
184	Modeling the Ecosystem Services Related to Phytoextraction: Carbon Sequestration Potential Using Willow and Poplar. Applied Sciences (Switzerland), 2020, 10, 8011.	2.5	4
185	Early signalling processes in roots play a crucial role in the differential salt tolerance in contrasting Chenopodium quinoa accessions. Journal of Experimental Botany, 2021, , .	4.8	4
186	Plants are alive: with all behavioural and cognitive consequences. EMBO Reports, 2020, 21, e50495.	4.5	4
187	Relationship between Leachate Pollution Index and growth response of two willow and poplar hybrids: Implications for phyto-treatment applications. Waste Management, 2021, 136, 162-173.	7.4	4
188	Correlation between VOC fingerprinting and antimicrobial activity of several essential oils extracted by plant resins againstA. tumefaciensandP. savastanoi. Flavour and Fragrance Journal, 2019, 34, 377-387.	2.6	3
189	Barbara G. Pickard - Queen of Plant Electrophysiology. Plant Signaling and Behavior, 2021, 16, 1911400.	2.4	3
190	Electrical signaling related to water stress acclimation. Sensing and Bio-Sensing Research, 2021, 32, 100420.	4.2	3
191	Oxygen Deficiency-Induced Root-to-Shoot Communication. Signaling and Communication in Plants, 2013, , 125-147.	0.7	2
192	New Insights into the Metabolic and Molecular Mechanism of Plant Response to Anaerobiosis. International Review of Cell and Molecular Biology, 2014, 311, 231-264.	3.2	2
193	Revisiting the Plant's Dilemma. Molecular Plant, 2016, 9, 7-9.	8.3	2
194	Long-Distance Signal Transmission in Trees. , 2006, , 333-349.		2
195	New Solid State Microsensors in Plant Physiology. , 2006, , 155-171.		2
196	Non-invasive Acoustic Sensing of Belowground Wooden Tissues: Possible Application to Spatial Mapping of Soil Usage by Tree Roots. Environmental Control in Biology, 2015, 53, 175-179.	0.7	2
197	The Physiological Response of Different Brook Willow (Salix acmophylla Boiss.) Ecotypes to Salinity. Plants, 2022, 11, 739.	3.5	2
198	Federico Delpino and the foundation of plant biology. Plant Signaling and Behavior, 2010, 5, 1067-1071.	2.4	1

#	Article	IF	Citations
199	Multielectrode Array: A New Approach to Plant Electrophysiology. , 2012, , 187-204.		1
200	Could FaRP-Like Peptides Participate in Regulation of Hyperosmotic Stress Responses in Plants?. Frontiers in Endocrinology, 2014, 5, 132.	3.5	1
201	Multi Electrode Arrays (MEAs) and the Electrical Network of the Roots. , 2012, , 51-65.		O
202	Mitigation of copper toxicity by DNA oligomers in green paramecia. Plant Signaling and Behavior, 2015, 10, e1010919.	2.4	0
203	Biphasic activation of survival and death pathways in Arabidopsis thaliana cultured cells by sorbitol-induced hyperosmotic stress. Plant Science, 2021, 305, 110844.	3.6	O
204	Areas of Research. , 2011, , 55-170.		0
205	Long-Distance Signal Transmission in Trees. , 0, , 333-349.		0