
Stephan Ludwig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019429/publications.pdf Version: 2024-02-01

STEDHAN LUDWIC

#	Article	IF	CITATIONS
1	Decontamination of disposable respirators for reuse in a pandemic employing in-situ-generated peracetic acid. American Journal of Infection Control, 2022, 50, 420-426.	2.3	1
2	The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cellular and Molecular Life Sciences, 2022, 79, 65.	5.4	29
3	Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases. Journal of Virology, 2022, 96, jvi0218621.	3.4	30
4	MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cellular and Molecular Immunology, 2022, 19, 234-244.	10.5	8
5	Differential interferon- $\hat{l}\pm$ subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
6	Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals, 2022, 15, 530.	3.8	22
7	Virus Infection and Systemic Inflammation: Lessons Learnt from COVID-19 and Beyond. Cells, 2022, 11, 2198.	4.1	9
8	The Two Sides of the Same Coin—Influenza Virus and Intracellular Signal Transduction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038513.	6.2	12
9	Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers. Oncolmmunology, 2021, 10, 1885778.	4.6	12
10	Phosphorylation of Influenza A Virus NS1 at Serine 205 Mediates Its Viral Polymerase-Enhancing Function. Journal of Virology, 2021, 95, .	3.4	11
11	Nonsenseâ€mediated <scp>mRNA</scp> decay does not restrict influenza A virus propagation. Cellular Microbiology, 2021, 23, e13323.	2.1	4
12	SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nature Communications, 2021, 12, 1577.	12.8	73
13	Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS oVâ€2 infection in vitro. British Journal of Pharmacology, 2021, 178, 2339-2350.	5.4	74
14	Inhibition of Phosphatidylinositol 3-Kinase by Pictilisib Blocks Influenza Virus Propagation in Cells and in Lungs of Infected Mice. Biomolecules, 2021, 11, 808.	4.0	4
15	Altered Signal Transduction in the Immune Response to Influenza Virus and S. pneumoniae or S. aureus Co-Infections. International Journal of Molecular Sciences, 2021, 22, 5486.	4.1	11
16	Dynamic phospho-modification of viral proteins as a crucial regulatory layer of influenza A virus replication and innate immune responses. Biological Chemistry, 2021, 402, 1493-1504.	2.5	2
17	Small spleen peptides prevent development of psoriatic arthritis via restoration of peripheral tolerance. Molecular Therapy, 2021, , .	8.2	0
18	Phosphorylation of JIP4 at S730 Presents Antiviral Properties against Influenza A Virus Infection. Journal of Virology, 2021, 95, e0067221.	3.4	3

#	Article	IF	CITATIONS
19	The Effector Domain of the Influenza A Virus Nonstructural Protein NS1 Triggers Host Shutoff by Mediating Inhibition and Global Deregulation of Host Transcription When Associated with Specific Structures in the Nucleus. MBio, 2021, 12, e0219621.	4.1	11
20	Shooting at a Moving Target—Effectiveness and Emerging Challenges for SARS-CoV-2 Vaccine Development. Vaccines, 2021, 9, 1052.	4.4	22
21	Titratable Pharmacological Regulation of CAR T Cells Using Zinc Finger-Based Transcription Factors. Cancers, 2021, 13, 4741.	3.7	7
22	Combination Therapy with Fluoxetine and the Nucleoside Analog GS-441524 Exerts Synergistic Antiviral Effects against Different SARS-CoV-2 Variants In Vitro. Pharmaceutics, 2021, 13, 1400.	4.5	35
23	Beyond Vaccines: Clinical Status of Prospective COVID-19 Therapeutics. Frontiers in Immunology, 2021, 12, 752227.	4.8	25
24	Integrating Evolutionary Aspects into Dual-Use Discussion: The Cases of Influenza Virus and Enterohaemorrhagic Escherichia coli. Evolution, Medicine and Public Health, 2021, 9, 383-392.	2.5	3
25	Cellular Protein Phosphatase 2A Regulates Cell Survival Mechanisms in Influenza A Virus Infection. International Journal of Molecular Sciences, 2021, 22, 11164.	4.1	2
26	Molecular determinants of health and disease. Biological Chemistry, 2021, 402, 1479.	2.5	0
27	Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets. Viruses, 2021, 13, 2068.	3.3	8
28	Association of national COVID-19 cases with objectively and subjectively measured mental health proxies in the Austrian Football league – an epidemiological study. International Journal of Transgender Health, 2021, 14, 1011-1021.	2.3	0
29	Generating Synthetic Populations Based On German Census Data. , 2021, , .		3
30	Type I interferon antagonistic properties of influenza B virus polymerase proteins. Cellular Microbiology, 2020, 22, e13143.	2.1	8
31	Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging Microbes and Infections, 2020, 9, 2245-2255.	6.5	129
32	Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly. PLoS Pathogens, 2020, 16, e1008775.	4.7	6
33	Impact of Staphylococcus aureus Small Colony Variants on Human Lung Epithelial Cells with Subsequent Influenza Virus Infection. Microorganisms, 2020, 8, 1998.	3.6	1
34	Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. International Journal of Molecular Sciences, 2020, 21, 9289.	4.1	17
35	Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules, 2020, 25, 4853.	3.8	3
36	The influenza replication blocking inhibitor LASAG does not sensitize human epithelial cells for bacterial infections. PLoS ONE, 2020, 15, e0233052.	2.5	2

#	Article	IF	CITATIONS
37	Dissecting the mechanism of signaling-triggered nuclear export of newly synthesized influenza virus ribonucleoprotein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16557-16566.	7.1	24
38	PD-1 IC Inhibition Synergistically Improves Influenza A Virus-Mediated Oncolysis of Metastatic Pulmonary Melanoma. Molecular Therapy - Oncolytics, 2020, 17, 190-204.	4.4	7
39	Combinatory Treatment with Oseltamivir and Itraconazole Targeting Both Virus and Host Factors in Influenza A Virus Infection. Viruses, 2020, 12, 703.	3.3	21
40	Antiviral efficacy against influenza virus and pharmacokinetic analysis of a novel MEK-inhibitor, ATR-002, in cell culture and in the mouse model. Antiviral Research, 2020, 178, 104806.	4.1	21
41	Spontaneous onset of TNFαâ€ŧriggered colonic inflammation depends on functional T lymphocytes, <scp>S100A8</scp> / <scp>A9</scp> alarmins, and <scp>MHC</scp> Hâ€2 haplotype. Journal of Pathology, 2020, 251, 388-399.	4.5	5
42	The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB Journal, 2019, 33, 12188-12199.	0.5	43
43	MEK inhibition drives anti-viral defence in RV but not RSV challenged human airway epithelial cells through AKT/p70S6K/4E-BP1 signalling. Cell Communication and Signaling, 2019, 17, 78.	6.5	15
44	Deficiency of Fhl2 leads to delayed neuronal cell migration and premature astrocyte differentiation. Journal of Cell Science, 2019, 132, .	2.0	6
45	Antiviral potential of human IFN-α subtypes against influenza A H3N2 infection in human lung explants reveals subtype-specific activities. Emerging Microbes and Infections, 2019, 8, 1763-1776.	6.5	30
46	Late activation of the <scp>Raf/MEK/ERK</scp> pathway is required for translocation of the respiratory syncytial virus <scp>F</scp> protein to the plasma membrane and efficient viral replication. Cellular Microbiology, 2019, 21, e12955.	2.1	22
47	The clinically licensed antifungal drug itraconazole inhibits influenza virus <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2019, 8, 80-93.	6.5	40
48	The Four-and-a-Half LIM Domain Protein 2 Supports Influenza A Virus–Induced Lung Inflammation by Restricting the Host Adaptive Immune Response. American Journal of Pathology, 2018, 188, 1236-1245.	3.8	9
49	Targeting intracellular signaling as an antiviral strategy: aerosolized LASAG for the treatment of influenza in hospitalized patients. Emerging Microbes and Infections, 2018, 7, 1-8.	6.5	22
50	Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends in Microbiology, 2018, 26, 624-636.	7.7	53
51	Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncolmmunology, 2018, 7, e1423171.	4.6	26
52	Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Frontiers in Immunology, 2018, 9, 2229.	4.8	64
53	In Vitro Models to Study Influenza Virus and Staphylococcus aureus Super-Infection on a Molecular Level. Methods in Molecular Biology, 2018, 1836, 375-386.	0.9	2
54	Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound. Scientific Reports, 2018, 8, 9114.	3.3	10

#	Article	IF	CITATIONS
55	<i>Staphylococcus aureus</i> triggers a shift from influenza virus–induced apoptosis to necrotic cell death. FASEB Journal, 2018, 32, 2779-2793.	0.5	11
56	Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. MBio, 2018, 9, .	4.1	59
57	The clinically approved MEK inhibitor Trametinib efficiently blocks influenza A virus propagation and cytokine expression. Antiviral Research, 2018, 157, 80-92.	4.1	33
58	Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. Journal of Clinical Investigation, 2018, 128, 1852-1866.	8.2	166
59	Influenza A virus NS1 protein-induced JNK activation and apoptosis are not functionally linked. Cellular Microbiology, 2017, 19, e12721.	2.1	12
60	Targeting a metabolic pathway to fight the flu. FEBS Journal, 2017, 284, 218-221.	4.7	30
61	Mitogen-activated protein kinases (MAPKs) regulate IL-6 over-production during concomitant influenza virus and Staphylococcus aureus infection. Scientific Reports, 2017, 7, 42473.	3.3	31
62	Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biological Chemistry, 2017, 398, 891-909.	2.5	21
63	The MEK-inhibitor CI-1040 displays a broad anti-influenza virus activity inÂvitro and provides a prolonged treatment window compared to standard of care inÂvivo. Antiviral Research, 2017, 142, 178-184.	4.1	44
64	The LIM-Only Protein Four and a Half LIM Domain Protein 2 Attenuates Development of Psoriatic Arthritis by Blocking Adam17-Mediated Tumor Necrosis Factor Release. American Journal of Pathology, 2017, 187, 2388-2398.	3.8	9
65	Pharmacodynamics, Pharmacokinetics, and Antiviral Activity of BAY 81-8781, a Novel NF-κB Inhibiting Anti-influenza Drug. Frontiers in Microbiology, 2017, 8, 2130.	3.5	21
66	Vemurafenib Limits Influenza A Virus Propagation by Targeting Multiple Signaling Pathways. Frontiers in Microbiology, 2017, 8, 2426.	3.5	23
67	Automated scalable modeling for population microsimulations. , 2016, , .		1
68	Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. Journal of Ethnopharmacology, 2016, 188, 144-152.	4.1	41
69	Macrophageâ€mediated psoriasis can be suppressed by regulatory T lymphocytes. Journal of Pathology, 2016, 240, 366-377.	4.5	44
70	Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability. Scientific Reports, 2016, 6, 27275.	3.3	27
71	Cytotoxic effects of natural and semisynthetic cucurbitacins on lung cancer cell line A549. Investigational New Drugs, 2016, 34, 139-148.	2.6	22
72	Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity. Cellular Microbiology, 2016, 18, 784-791.	2.1	31

#	Article	IF	CITATIONS
73	In Vitro and In Vivo Antitumor Activity of a Novel Semisynthetic Derivative of Cucurbitacin B. PLoS ONE, 2015, 10, e0117794.	2.5	22
74	Super-infection with <i>Staphylococcus aureus</i> inhibits influenza virus-induced type I IFN signalling through impaired STAT1-STAT2 dimerization. Cellular Microbiology, 2015, 17, 303-317.	2.1	45
75	Platelet Activation and Aggregation Promote Lung Inflammation and Influenza Virus Pathogenesis. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 804-819.	5.6	138
76	Evidence for a Novel Mechanism of Influenza Virus-Induced Type I Interferon Expression by a Defective RNA-Encoded Protein. PLoS Pathogens, 2015, 11, e1004924.	4.7	31
77	Nonstructural Protein 1 (NS1)-Mediated Inhibition of c-Abl Results in Acute Lung Injury and Priming for Bacterial Co-infections: Insights Into 1918 H1N1 Pandemic?. Journal of Infectious Diseases, 2015, 211, 1418-1428.	4.0	14
78	FHL2 regulates the resolution of tissue damage in chronic inflammatory arthritis. Annals of the Rheumatic Diseases, 2015, 74, 2216-2223.	0.9	9
79	The Rac1 Inhibitor NSC23766 Exerts Anti-Influenza Virus Properties by Affecting the Viral Polymerase Complex Activity. PLoS ONE, 2014, 9, e88520.	2.5	22
80	Antiviral activity of Ladania067, an extract from wild black currant leaves against influenza A virus in vitro and in vivo. Frontiers in Microbiology, 2014, 5, 171.	3.5	28
81	Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nature Communications, 2014, 5, 5645.	12.8	55
82	Inhibition of p38 Mitogen-activated Protein Kinase Impairs Influenza Virus-induced Primary and Secondary Host Gene Responses and Protects Mice from Lethal H5N1 Infection. Journal of Biological Chemistry, 2014, 289, 13-27.	3.4	107
83	MAPKAP kinase 3 suppresses <i>Ifng</i> gene expression and attenuates NK cell cytotoxicity and Th1 CD4 Tâ€cell development upon influenza A virus infection. FASEB Journal, 2014, 28, 4235-4246.	0.5	12
84	New Virulence Determinants Contribute to the Enhanced Immune Response and Reduced Virulence of an Influenza A Virus A/PR8/34 Variant. Journal of Infectious Diseases, 2014, 209, 532-541.	4.0	28
85	Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cellular Microbiology, 2014, 16, 1854-1874.	2.1	15
86	Influenza, a One Health paradigm—Novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. International Journal of Medical Microbiology, 2014, 304, 894-901.	3.6	24
87	β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Communication and Signaling, 2014, 12, 29.	6.5	57
88	Will omics help to cure the flu?. Trends in Microbiology, 2014, 22, 232-233.	7.7	4
89	Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1. Journal of Virology, 2014, 88, 8843-8852.	3.4	32
90	3-O-Galloylated Procyanidins from Rumex acetosa L. Inhibit the Attachment of Influenza A Virus. PLoS ONE, 2014, 9, e110089.	2.5	38

#	Article	IF	CITATIONS
91	Pathogenesis of <i>Staphylococcus aureus</i> necrotizing pneumonia: the role of PVL and an influenza coinfection. Expert Review of Anti-Infective Therapy, 2013, 11, 1041-1051.	4.4	54
92	The NF-κB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cellular Microbiology, 2013, 15, 1198-1211.	2.1	68
93	Highly Pathogenic Influenza Viruses Inhibit Inflammatory Response in Monocytes via Activation of Rar-Related Orphan Receptor RORa. Journal of Innate Immunity, 2013, 5, 505-518.	3.8	10
94	The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. Antiviral Research, 2013, 99, 336-344.	4.1	35
95	Annexin A6-Balanced Late Endosomal Cholesterol Controls Influenza A Replication and Propagation. MBio, 2013, 4, e00608-13.	4.1	43
96	Doxycyclineâ€Induced Expression of Transgenic Human Tumor Necrosis Factor α in Adult Mice Results in Psoriasisâ€Iike Arthritis. Arthritis and Rheumatism, 2013, 65, 2290-2300.	6.7	22
97	Proteinase-Activated Receptor-2 Agonist Activates Anti-Influenza Mechanisms and Modulates IFNÎ ³ -Induced Antiviral Pathways in Human Neutrophils. BioMed Research International, 2013, 2013, 1-10.	1.9	11
98	A Plant Extract of Ribes nigrum folium Possesses Anti-Influenza Virus Activity In Vitro and In Vivo by Preventing Virus Entry to Host Cells. PLoS ONE, 2013, 8, e63657.	2.5	24
99	The LIM-Only Protein FHL2 Attenuates Lung Inflammation during Bleomycin-Induced Fibrosis. PLoS ONE, 2013, 8, e81356.	2.5	26
100	PAR1 contributes to influenza A virus pathogenicity in mice. Journal of Clinical Investigation, 2013, 123, 206-214.	8.2	73
101	Proliferative Inhibition and Apoptotic Mechanism on Human Non-small-cell Lung Cancer (A549 Cells) of a Novel Cucurbitacin from Wilbrandia ebracteata Cogn. International Journal of Cancer Research, 2013, 9, 54-68.	0.2	5
102	Combined Action of Influenza Virus and Staphylococcus aureus Panton–Valentine Leukocidin Provokes Severe Lung Epithelium Damage. Journal of Infectious Diseases, 2012, 206, 1138-1148.	4.0	59
103	Synergistic Adaptive Mutations in the Hemagglutinin and Polymerase Acidic Protein Lead to Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus in Mice. Journal of Infectious Diseases, 2012, 205, 262-271.	4.0	59
104	A new splice variant of the human guanylateâ€binding protein 3 mediates antiâ€influenza activity through inhibition of viral transcription and replication. FASEB Journal, 2012, 26, 1290-1300.	0.5	76
105	The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to α2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology, 2012, 22, 1055-1076.	2.5	10
106	Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages. Journal of Leukocyte Biology, 2012, 92, 11-20.	3.3	46
107	Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. Journal of Leukocyte Biology, 2012, 92, 75-82.	3.3	97
108	Introduction of silent mutations into the NP gene of influenza A viruses as a possible strategy for the creation of a live attenuated vaccine. Vaccine, 2012, 30, 4480-4489.	3.8	8

#	Article	IF	CITATIONS
109	The NS1 Protein of Influenza A Virus Blocks RIG-I-Mediated Activation of the Noncanonical NF-κB Pathway and p52/RelB-Dependent Gene Expression in Lung Epithelial Cells. Journal of Virology, 2012, 86, 10211-10217.	3.4	65
110	A Single Point Mutation (Y89F) within the Non-Structural Protein 1 of Influenza A Viruses Limits Epithelial Cell Tropism and Virulence in Mice. American Journal of Pathology, 2012, 180, 2361-2374.	3.8	27
111	Genetics, Evolution, and the Zoonotic Capacity of European Swine Influenza Viruses. Current Topics in Microbiology and Immunology, 2012, 370, 29-55.	1.1	53
112	Small molecule inhibitors of the c-Jun N-terminal kinase (JNK) possess antiviral activity against highly pathogenic avian and human pandemic influenza A viruses. Biological Chemistry, 2012, 393, 525-534.	2.5	41
113	Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cellular Microbiology, 2012, 14, 774-789.	2.1	27
114	The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection. Cellular Microbiology, 2012, 14, 1135-1147.	2.1	13
115	Influenza A Virus Does Not Encode a Tetherin Antagonist with Vpu-Like Activity and Induces IFN-Dependent Tetherin Expression in Infected Cells. PLoS ONE, 2012, 7, e43337.	2.5	28
116	Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production. Cellular Microbiology, 2011, 13, 1907-1919.	2.1	52
117	Role of proteinaseâ€activated receptorâ€2 in antiâ€bacterial and immunomodulatory effects of interferonâ€Î³ on human neutrophils and monocytes. Immunology, 2011, 133, 329-339.	4.4	12
118	Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology, 2011, 412, 36-45.	2.4	75
119	Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antiviral Research, 2011, 92, 195-203.	4.1	100
120	Disruption of virus-host cell interactions and cell signaling pathways as an anti-viral approach against influenza virus infections. Biological Chemistry, 2011, 392, 837-847.	2.5	66
121	Identification and characterisation of novel Mss4-binding Rab GTPases. Biological Chemistry, 2011, 392, 239-48.	2.5	19
122	The influenza virus PB1-F2 protein has interferon antagonistic activity. Biological Chemistry, 2011, 392, 1135-1144.	2.5	67
123	Origin of the 1918 pandemic H1N1 influenza A virus as studied by codon usage patterns and phylogenetic analysis. Rna, 2011, 17, 64-73.	3.5	37
124	H5N1 Virus Activates Signaling Pathways in Human Endothelial Cells Resulting in a Specific Imbalanced Inflammatory Response. Journal of Immunology, 2011, 186, 164-173.	0.8	56
125	Interplay between influenza A virus and the innate immune signaling. Microbes and Infection, 2010, 12, 81-87.	1.9	105
126	CRK adaptor protein expression is required for efficient replication of avian influenza A viruses and controls JNK-mediated apoptotic responses. Cellular Microbiology, 2010, 12, 831-843.	2.1	43

#	Article	IF	CITATIONS
127	MAP kinaseâ€activated protein kinases 2 and 3 are required for influenza A virus propagation and act <i>via</i> inhibition of PKR. FASEB Journal, 2010, 24, 4068-4077.	0.5	30
128	The NS Segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) Is Sufficient To Alter Replication Efficiency, Cell Tropism, and Host Range of an H7N1 HPAIV. Journal of Virology, 2010, 84, 2122-2133.	3.4	69
129	Monoclonal Antibodies Against the PB1-F2 Protein of H1N1 Influenza A Virus. Hybridoma, 2010, 29, 321-326.	0.4	5
130	The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells. PLoS Pathogens, 2010, 6, e1001099.	4.7	275
131	Erk5 Activation Elicits a Vasoprotective Endothelial Phenotype via Induction of Krüppel-like Factor 4 (KLF4). Journal of Biological Chemistry, 2010, 285, 26199-26210.	3.4	120
132	The Clinically Approved Proteasome Inhibitor PS-341 Efficiently Blocks Influenza A Virus and Vesicular Stomatitis Virus Propagation by Establishing an Antiviral State. Journal of Virology, 2010, 84, 9439-9451.	3.4	45
133	The influenza A virus matrix protein as a marker to monitor initial virus internalisation. Biological Chemistry, 2009, 390, 509-515.	2.5	17
134	Essential Impact of NF-κB Signaling on the H5N1 Influenza A Virus-Induced Transcriptome. Journal of Immunology, 2009, 183, 5180-5189.	0.8	87
135	MEK5/ERK5 Signaling Modulates Endothelial Cell Migration and Focal Contact Turnover. Journal of Biological Chemistry, 2009, 284, 24972-24980.	3.4	33
136	Interleukin-27 displays interferon-Î ³ -like functions in human hepatoma cells and hepatocytes. Hepatology, 2009, 50, 585-591.	7.3	54
137	A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathway. Cellular Microbiology, 2009, 11, 863-871.	2.1	143
138	Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cellular Microbiology, 2009, 11, 1502-1516.	2.1	59
139	Targeting cell signalling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. Journal of Antimicrobial Chemotherapy, 2009, 64, 1-4.	3.0	117
140	Influenza A Virus TRIMs the Type I Interferon Response. Cell Host and Microbe, 2009, 5, 420-421.	11.0	12
141	High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not confer antiviral activity. Retrovirology, 2009, 6, 38.	2.0	32
142	Influenza Viruses Control the Vertebrate Type I Interferon System: Factors, Mechanisms, and Consequences. Journal of Interferon and Cytokine Research, 2009, 29, 549-558.	1.2	64
143	Signaling Pathways Induced by Influenza Viruses. , 2009, , 109-129.		0
144	The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cellular Microbiology, 2008, 10, 1140-1152.	2.1	132

#	Article	IF	CITATIONS
145	Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression. PLoS Pathogens, 2008, 4, e1000196.	4.7	241
146	Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biological Chemistry, 2008, 389, 1307-12.	2.5	96
147	Highlight – Viruses and Signaling. Biological Chemistry, 2008, 389, 1251-1251.	2.5	Ο
148	Interaction between S100A8/A9 and Annexin A6 Is Involved in the Calcium-induced Cell Surface Exposition of S100A8/A9. Journal of Biological Chemistry, 2008, 283, 31776-31784.	3.4	37
149	Deficiency in the LIMâ€only protein FHL2 impairs assembly of extracellular matrix proteins. FASEB Journal, 2008, 22, 2508-2520.	0.5	36
150	Agonists of Proteinase-Activated Receptor-2 Enhance IFN-Î ³ -Inducible Effects on Human Monocytes: Role in Influenza A Infection. Journal of Immunology, 2008, 180, 6903-6910.	0.8	21
151	Signaling to Life and Death: Influenza Viruses and Intracellular Signal Transduction Cascades. Monographs in Virology, 2008, , 210-224.	0.6	1
152	The Contact Allergen Nickel Triggers a Unique Inflammatory and Proangiogenic Gene Expression Pattern via Activation of NF-κB and Hypoxia-Inducible Factor-1α. Journal of Immunology, 2007, 178, 3198-3207.	0.8	71
153	Regulation of Suppressor of Cytokine Signaling 3 (SOCS3) mRNA Stability by TNF-α Involves Activation of the MKK6/p38MAPK/MK2 Cascade. Journal of Immunology, 2007, 178, 2813-2826.	0.8	101
154	<i>Candida albicans</i> Triggers Activation of Distinct Signaling Pathways to Establish a Proinflammatory Gene Expression Program in Primary Human Endothelial Cells. Journal of Immunology, 2007, 179, 8435-8445.	0.8	56
155	Influenza A Virus NS1 Protein Activates the PI3K/Akt Pathway To Mediate Antiapoptotic Signaling Responses. Journal of Virology, 2007, 81, 3058-3067.	3.4	286
156	Activation of Phosphatidylinositol 3-Kinase Signaling by the Nonstructural NS1 Protein Is Not Conserved among Type A and B Influenza Viruses. Journal of Virology, 2007, 81, 12097-12100.	3.4	40
157	The binding of Mss4 to αâ€integrin subunits regulates matrix metalloproteinase activation and fibronectin remodeling. FASEB Journal, 2007, 21, 497-510.	0.5	22
158	Activation of MAP kinase p38 is critical for the cell-cycle–controlled suppressor function of regulatory T cells. Blood, 2007, 109, 4351-4359.	1.4	63
159	Exploited defense: how influenza viruses take advantage of antiviral signaling responses. Future Virology, 2007, 2, 91-100.	1.8	16
160	Influenza viruses and MAP kinase cascades – Novel targets for an antiviral intervention?. Signal Transduction, 2007, 7, 81-88.	0.4	20
161	Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nature Medicine, 2007, 13, 1042-1049.	30.7	1,207
162	Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-?B-inhibiting activity. Cellular Microbiology, 2007, 9, 1683-1694.	2.1	181

#	Article	IF	CITATIONS
163	Activation of NF-κB by IL-1β blocks IL-6-induced sustained STAT3 activation and STAT3-dependent gene expression of the human γ-fibrinogen gene. Cellular Signalling, 2007, 19, 1866-1878.	3.6	50
164	CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antiviral Research, 2007, 76, 1-10.	4.1	108
165	A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Research, 2007, 76, 38-47.	4.1	142
166	Anti-viral approaches against influenza viruses. , 2006, , 115-167.		0
167	Polyethylenimine, a cost-effective transfection reagent. Signal Transduction, 2006, 6, 179-184.	0.4	148
168	Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cellular Microbiology, 2006, 8, 375-386.	2.1	210
169	Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cellular Microbiology, 2006, 8, 1336-1348.	2.1	212
170	Membrane Accumulation of Influenza A Virus Hemagglutinin Triggers Nuclear Export of the Viral Genome via Protein Kinase Cα-mediated Activation of ERK Signaling. Journal of Biological Chemistry, 2006, 281, 16707-16715.	3.4	121
171	Viral targeting of the interferon-β-inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13640-13645.	7.1	102
172	MAPKAP Kinase 3pK Phosphorylates and Regulates Chromatin Association of the Polycomb Group Protein Bmi1. Journal of Biological Chemistry, 2005, 280, 5178-5187.	3.4	150
173	Constitutive Activation of the Transcription Factor NF-κB Results in Impaired Borna Disease Virus Replication. Journal of Virology, 2005, 79, 6043-6051.	3.4	17
174	Dual Function of Interleukin-1β for the Regulation of Interleukin-6-induced Suppressor of Cytokine Signaling 3 Expression. Journal of Biological Chemistry, 2004, 279, 45279-45289.	3.4	24
175	NF-κB-dependent Induction of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) and Fas/FasL Is Crucial for Efficient Influenza Virus Propagation. Journal of Biological Chemistry, 2004, 279, 30931-30937.	3.4	220
176	Lung-specific expression of active Raf kinase results in increased mortality of influenza A virus-infected mice. Oncogene, 2004, 23, 6639-6646.	5.9	46
177	Rac1 and PAK1 are upstream of IKK-ε and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Letters, 2004, 567, 230-238.	2.8	126
178	Mitogen-activated 3p kinase is active in the nucleus. Experimental Cell Research, 2004, 299, 101-109.	2.6	24
179	MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS Letters, 2004, 561, 37-43.	2.8	105
180	Transcriptional profiling of IKK2/NF-κB— and p38 MAP kinasedependent gene expression in TNF-α—stimulated primary human endothelial cells. Blood, 2004, 103, 3365-3373.	1.4	127

#	Article	IF	CITATIONS
181	MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood, 2004, 104, 4260-4268.	1.4	295
182	Caspase 3 activation is essential for efficient influenza virus propagation. EMBO Journal, 2003, 22, 2717-2728.	7.8	299
183	Caspase Inhibitors as a Supplement in Immune Activation Therapies to Achieve Eradication of HIV in Its Latent Reservoirs. Annals of the New York Academy of Sciences, 2003, 1010, 209-212.	3.8	4
184	Influenza-virus-induced signaling cascades: targets for antiviral therapy?. Trends in Molecular Medicine, 2003, 9, 46-52.	6.7	149
185	Borna Disease Virus Nucleoprotein Interacts with the Cdc2-Cyclin B1 Complex. Journal of Virology, 2003, 77, 11186-11192.	3.4	22
186	IFNâ€Î± antagonistic activity of HCV core protein involves induction of suppressor of cytokine signalingâ€3. FASEB Journal, 2003, 17, 1-16.	0.5	267
187	The Influenza A Virus NS1 Protein Inhibits Activation of Jun N-Terminal Kinase and AP-1 Transcription Factors. Journal of Virology, 2002, 76, 11166-11171.	3.4	164
188	Caspase Inhibition Activates HIV in Latently Infected Cells. Journal of Biological Chemistry, 2002, 277, 15459-15464.	3.4	15
189	Hypoxia/reoxygenation induction of monocyte chemoattractant protein-1 in melanoma cells: involvement of nuclear factor-κB, stimulatory protein-1 transcription factors and mitogen-activated protein kinase pathways. Biochemical Journal, 2002, 366, 299-306.	3.7	21
190	Caspase inhibitors induce a switch from apoptotic to proinflammatory signaling in CD95-stimulated T lymphocytes. European Journal of Immunology, 2002, 32, 2471-2480.	2.9	12
191	Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Reports, 2001, 2, 829-834.	4.5	100
192	Homocysteine inhibits tumor necrosis factor-induced activation of endothelium via modulation of nuclear factor-Î⁰b activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1540, 154-165.	4.1	22
193	Multiple signaling pathways regulate NF-κB–dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood, 2001, 97, 46-55.	1.4	147
194	Selective Expression of Calcium-Binding Proteins S100A8 and S100A9 at Distinct Sites of Hair Follicles. Journal of Investigative Dermatology, 2001, 117, 748-750.	0.7	17
195	Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nature Cell Biology, 2001, 3, 301-305.	10.3	463
196	Activation of Cardiac c-Jun NH 2 -Terminal Kinases and p38-Mitogen–Activated Protein Kinases With Abrupt Changes in Hemodynamic Load. Hypertension, 2001, 37, 1222-1228.	2.7	56
197	Neurotrophin Receptor-interacting Mage Homologue Is an Inducible Inhibitor of Apoptosis Protein-interacting Protein That Augments Cell Death. Journal of Biological Chemistry, 2001, 276, 39985-39989.	3.4	77
198	The Vesicular Stomatitis Virus Matrix Protein Inhibits Glycoprotein 130-Dependent STAT Activation. Journal of Immunology, 2001, 167, 5209-5216.	0.8	11

#	Article	IF	CITATIONS
199	Activation of NF-κB via the lκB Kinase Complex Is Both Essential and Sufficient for Proinflammatory Gene Expression in Primary Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 28451-28458.	3.4	184
200	MEK-Specific Inhibitor U0126 Blocks Spread of Borna Disease Virus in Cultured Cells. Journal of Virology, 2001, 75, 4871-4877.	3.4	109
201	Influenza Virus-induced AP-1-dependent Gene Expression Requires Activation of the JNK Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 10990-10998.	3.4	136
202	Influenza Virus-induced NF-κB-dependent Gene Expression Is Mediated by Overexpression of Viral Proteins and Involves Oxidative Radicals and Activation of IκB Kinase. Journal of Biological Chemistry, 2000, 275, 8307-8314.	3.4	128
203	Ras-independent Activation of the Raf/MEK/ERK Pathway upon Calcium-induced Differentiation of Keratinocytes. Journal of Biological Chemistry, 2000, 275, 41011-41017.	3.4	104
204	Transactivation of Naturally Occurring HIV-1 Long Terminal Repeats by the JNK Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 20382-20390.	3.4	18
205	Serine/Threonine Kinases 3pK and MAPK-activated Protein Kinase 2 Interact with the Basic Helix-Loop-Helix Transcription Factor E47 and Repress Its Transcriptional Activity. Journal of Biological Chemistry, 2000, 275, 20239-20242.	3.4	60
206	Different Mitogen-activated Protein Kinase Signaling Pathways Cooperate to Regulate Tumor Necrosis Factor α Gene Expression in T Lymphocytes. Journal of Biological Chemistry, 1999, 274, 4319-4327.	3.4	92
207	A Fatal Relationship—Influenza Virus Interactions with the Host Cell. Viral Immunology, 1999, 12, 175-196.	1.3	58
208	The Mitogen-activated Protein (MAP) Kinase p38 and Its Upstream Activator MAP Kinase Kinase 6 Are Involved in the Activation of Signal Transducer and Activator of Transcription by Hyperosmolarity. Journal of Biological Chemistry, 1999, 274, 30222-30227.	3.4	103
209	The MKK6/p38 Stress Kinase Cascade Is Critical for Tumor Necrosis Factor-–Induced Expression of Monocyte-Chemoattractant Protein-1 in Endothelial Cells. Blood, 1999, 93, 857-865.	1.4	109
210	The MKK6/p38 Stress Kinase Cascade Is Critical for Tumor Necrosis Factor-–Induced Expression of Monocyte-Chemoattractant Protein-1 in Endothelial Cells. Blood, 1999, 93, 857-865.	1.4	68
211	The Stress Inducer Arsenite Activates Mitogen-activated Protein Kinases Extracellular Signal-regulated Kinases 1 and 2 via a MAPK Kinase 6/p38-dependent Pathway. Journal of Biological Chemistry, 1998, 273, 1917-1922.	3.4	198
212	Cascading towards vascular disorder gene therapy. Nature Medicine, 1995, 1, 513-515.	30.7	13
213	Evolution of pig influenza viruses. Virology, 1991, 183, 61-73.	2.4	142
214	Sequence of the nucleoprotein (NP) gene of the influenza A/anas acuta/Primorje/695/76 (H2N3) virus. Nucleic Acids Research, 1991, 19, 3456-3456.	14.5	0
215	The influenza virus PB1-F2 protein has interferon-antagonistic activity. Biological Chemistry, 0, ,	2.5	3