
Pierre Golstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8019034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An early history of T cell-mediated cytotoxicity. Nature Reviews Immunology, 2018, 18, 527-535.	22.7	179
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
3	Conserved nucleolar stress at the onset of cell death. FEBS Journal, 2017, 284, 3791-3800.	4.7	7
4	Autophagy in <i>Dictyostelium</i> : Mechanisms, regulation and disease in a simple biomedical model. Autophagy, 2017, 13, 24-40.	9.1	74
5	c-di-GMP induction of <i>Dictyostelium</i> cell death requires the polyketide DIF-1. Molecular Biology of the Cell, 2015, 26, 651-658.	2.1	11
6	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
7	Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy, 2011, 7, 501-508.	9.1	36
8	Autophagic Cell Death in <i>Dictyostelium</i> Requires the Receptor Histidine Kinase DhkM. Molecular Biology of the Cell, 2010, 21, 1825-1835.	2.1	16
9	Autophagy in Dictyostelium: Genes and pathways, cell death and infection. Autophagy, 2010, 6, 686-701.	9.1	104
10	A second signal for autophagic cell death?. Autophagy, 2010, 6, 823-824.	9.1	10
11	Necrotic cell death: From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Experimental Cell Research, 2009, 315, 26-38.	2.6	26
12	Autophagic cell death: Analysis in Dictyostelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1422-1431.	4.1	51
13	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 2009, 16, 3-11.	11.2	2,572
14	Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1. Cell Death and Differentiation, 2009, 16, 564-570.	11.2	22
15	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	11.2	599
16	Marked mitochondrial alterations upon starvation without cell death, caspases or Bcl-2 family members. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2013-2019.	4.1	9
17	A specific pathway inducing autophagic cell death is marked by an IP3R mutation. Autophagy, 2008, 4, 349-350.	9.1	13
18	A UDP-glucose derivative is required for vacuolar autophagic cell death. Autophagy, 2008, 4, 680-691.	9.1	19

#	Article	lF	CITATIONS
19	The Inositol 1,4,5-Trisphosphate Receptor Is Required to Signal Autophagic Cell Death. Molecular Biology of the Cell, 2008, 19, 691-700.	2.1	67
20	Chapter 1 Analysis of Autophagic and Necrotic Cell Death in Dictyostelium. Methods in Enzymology, 2008, 446, 1-15.	1.0	6
21	Chapter 23 Autophagy and Autophagic Cell Death in Dictyostelium. Methods in Enzymology, 2008, 451, 343-358.	1.0	6
22	Autophagic or necrotic cell death in the absence of caspase and bcl-2 family members. Biochemical and Biophysical Research Communications, 2007, 363, 536-541.	2.1	26
23	A necrotic cell death model in a protist. Cell Death and Differentiation, 2007, 14, 266-274.	11.2	54
24	From autophagic to necrotic cell death in Dictyostelium. Seminars in Cancer Biology, 2007, 17, 94-100.	9.6	13
25	Cell death in unusual but informative and beautiful model organisms. Seminars in Cancer Biology, 2007, 17, 91-93.	9.6	2
26	Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 2007, 32, 37-43.	7.5	853
27	How to Assess and Study Cell Death in <i>Dictyostelium discoideum</i> . , 2006, 346, 535-550.		12
28	Redundant cell death mechanisms as relics and backups. Cell Death and Differentiation, 2005, 12, 1490-1496.	11.2	79
29	Cell Death inDictyostelium: Assessing A Genetic Approach. , 2005, , 59-77.		1
30	Developmental Cell Death in Dictyostelium Does Not Require Paracaspase. Journal of Biological Chemistry, 2004, 279, 11489-11494.	3.4	65
31	Autophagy Gene Disruption Reveals a Non-vacuolar Cell Death Pathway in Dictyostelium. Journal of Biological Chemistry, 2004, 279, 48404-48409.	3.4	85
32	Cell-death alternative model organisms: why and which?. Nature Reviews Molecular Cell Biology, 2003, 4, 798-807.	37.0	91
33	Dictyostelium cell death. Journal of Cell Biology, 2003, 160, 1105-1114.	5.2	54
34	Approches génétiques de la mort cellulaire programmée : succès et questions. Medecine/Sciences, 2002, 18, 831-840.	0.2	0
35	Chapter 21 Methods to study cell death in Dictyostelium discoideum. Methods in Cell Biology, 2001, 66, 469-497.	1.1	7
36	Obituary Arnold Greenberg. Nature Cell Biology, 2001, 3, E98-E98.	10.3	0

#	Article	IF	CITATIONS
37	More than one way to go. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11-13.	7.1	211
38	T Cell Death and Transforming Growth Factor β1. Journal of Experimental Medicine, 2001, 194, F19-F22.	8.5	8
39	SIGNAL TRANSDUCTION: FasL Binds Preassembled Fas. Science, 2000, 288, 2328-2329.	12.6	43
40	WW domain-containing FBP-30 is regulated by p53. Cell Death and Differentiation, 1999, 6, 883-889.	11.2	7
41	Interdigital cell death can occur through a necrotic and caspase-independent pathway. Current Biology, 1999, 9, 967-S1.	3.9	300
42	An insertional mutagenesis approach to Dictyostelium cell death. Cell Death and Differentiation, 1998, 5, 416-425.	11.2	25
43	Apparent caspase independence of programmed cell death in Dictyostelium. Current Biology, 1998, 8, 955-S1.	3.9	104
44	Dismantling in Cell Death: Molecular Mechanisms and Relationship to Caspase Activation. Scandinavian Journal of Immunology, 1998, 47, 523-531.	2.7	42
45	Cell Death in Us and Others. , 1998, 281, 1283-1283.		46
46	Controlling Cell Death. Science, 1997, 275, 1081-1082.	12.6	343
47	Fas and other cell death signaling pathways. Seminars in Immunology, 1997, 9, 93-107.	5.6	94
48	Cell death: TRAIL and its receptors. Current Biology, 1997, 7, R750-R753.	3.9	175
49	T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines Journal of Experimental Medicine, 1996, 183, 2593-2603.	8.5	1,363
50	FAS, <i>DICTYOSTELIUM</i> , CELL DEATH AND EVOLUTION. Biochemical Society Transactions, 1996, 24, 591S-591S.	3.4	0
51	Lymphocyte activation: T-cell regulation by CTLA-4. Current Biology, 1996, 6, 398-400.	3.9	45
52	Non-exclusive Fas control and age dependence of viral superantigen-induced clonal deletion in lupus-prone mice. European Journal of Immunology, 1995, 25, 1517-1523.	2.9	25
53	Two signaling pathways can lead to Fas ligand expression in CD8+ cytotoxic T lymphocyte clones. European Journal of Immunology, 1995, 25, 3381-3387.	2.9	43
54	Fas Bridging Cell Death and Cytotoxicity: The Reaper Connection. Immunological Reviews, 1995, 146, 45-56.	6.0	19

#	Article	IF	CITATIONS
55	The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity Journal of Experimental Medicine, 1995, 181, 1905-1909.	8.5	90
56	TCR/CD3 coupling to Fas-based cytotoxicity Journal of Experimental Medicine, 1995, 181, 781-786.	8.5	196
57	Homology between reaper and the cell death domains of Fas and TNFR1. Cell, 1995, 81, 185-186.	28.9	91
58	The Fas Death Factor. Science, 1995, 267, 1449-1456.	12.6	3,984
59	Deux mécanismes moléculaires pour la cytotoxixité T : perforine/granzymes et Fas. Medecine/Sciences, 1995, 11, 99.	0.2	2
60	Fas-based lymphocyte-mediated cytotoxicity against syngeneic activated lymphocytes: A regulatory pathway?. European Journal of Immunology, 1994, 24, 923-927.	2.9	151
61	T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. European Journal of Immunology, 1994, 24, 2469-2476.	2.9	191
62	Fas and Perforin Pathways as Major Mechanisms of T Cell-Mediated Cytotoxicity. Science, 1994, 265, 528-530.	12.6	1,506
63	Lymphocyte activation and effector functions. Current Opinion in Immunology, 1993, 5, 313-323.	5.5	42
64	Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family. Cell, 1993, 75, 1169-1178.	28.9	2,478
65	Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity Journal of Experimental Medicine, 1993, 177, 195-200.	8.5	795
66	Subtractive and Differential Molecular Biology Approaches to Molecules Preferentially Expressed in Cytotoxic and Other T Cells. , 1993, , 237-250.		0
67	Molecular linkage of the human CTLA4 and CD28 Ig-superfamily genes in yeast artificial chromosomes. Genomics, 1992, 13, 856-861.	2.9	37
68	Lymphocyte activation and effector functions. Current Opinion in Immunology, 1992, 4, 241-245.	5.5	21
69	Lymphocyte activation and effector functions. Current Opinion in Immunology, 1991, 3, 283-286.	5.5	7
70	Cell Death Mechanisms and the Immune System. Immunological Reviews, 1991, 121, 29-65.	6.0	443
71	Novel structures CTLA-2α and CTLA-2β expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions. European Journal of Immunology, 1989, 19, 631-635.	2.9	85
72	Molecular Cloning of an Inducible Cytotoxic T-Lymphocyte-Associated Gene (Hu-CTLA 1) and Gene		0

Localization to Human Chromosome 14. , 1989, , 574-577.

5

#	Article	IF	CITATIONS
73	Human Ig superfamily CTLAâ€4 gene: chromosomal localization and identity of protein sequence between murine and human CTLAâ€4 cytoplasmic domains. European Journal of Immunology, 1988, 18, 1901-1905.	2.9	275
74	Proximity of the CTLA-1 serine esterase and Tcr ? loci in mouse and man. Immunogenetics, 1988, 28, 439-444.	2.4	40
75	A Differential Molecular Biology Search for Genes Preferentially Expressed in Functional T Lymphocytes: The CTLA Genes. Immunological Reviews, 1988, 103, 21-36.	6.0	45
76	Cytolytic T-cell melodrama. Nature, 1987, 327, 12-12.	27.8	48
77	A new member of the immunoglobulin superfamily—CTLA-4. Nature, 1987, 328, 267-270.	27.8	1,077
78	The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature, 1986, 322, 268-271.	27.8	194
79	Self-sparing of long-term in vitro-cloned or uncloned cytotoxic T lymphocytes Journal of Experimental Medicine, 1986, 164, 962-967.	8.5	27
80	Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature, 1985, 313, 318-320.	27.8	757
81	Unexpected cell surface labeling in conjugates between cytotoxic T lymphocytes and target cells Journal of Histochemistry and Cytochemistry, 1985, 33, 647-654.	2.5	11
82	Expression of H-2Db on the cell surface in the absence of detectable beta 2 microglobulin Journal of Experimental Medicine, 1984, 160, 317-322.	8.5	76
83	On the Molecular Basis of T Helper Cell Function Scandinavian Journal of Immunology, 1984, 19, 551-561.	2.7	5
84	T cell-mediated cytolysis: on the strength of effectortarget cell interaction. European Journal of Immunology, 1983, 13, 424-429.	2.9	33
85	Reproducible dissociation of cellular aggregates with a wide range of calibrated shear forces: Application to cytolytic lymphocyte-target cell conjugates. Journal of Immunological Methods, 1983, 58, 209-224.	1.4	23
86	Expression of human histocompatibility antigens on the surface of murine cells transformed by cosmid clones containing HLA genes. Experimental Cell Research, 1982, 141, 473-478.	2.6	9
87	Control of T- and B-lymphocyte differentiation: Preliminary characterization of lymphocyte promoter factor(s) made by FCS-induced T-cell line and clones. Cellular Immunology, 1982, 71, 139-147.	3.0	7
88	Inhibition of murine T cell-mediated cytolysis and T cell proliferation by a rat monoclonal antibody immunoprecipitating two lymphoid cell surface polypeptides of 94000 and 180000 molecular weight. European Journal of Immunology, 1982, 12, 60-69.	2.9	234
89	Expression of human class I histocompatibility antigens at the surface of DNA-transformed mouse L cells. Immunogenetics, 1982, 16, 355-361.	2.4	57
90	Characterization of an Lyt-l+ Cytolytic T-Cell Clone Specific for a Polymorphic Domain of the I-Ak Molecule. Scandinavian Journal of Immunology, 1982, 15, 619-625.	2.7	27

#	Article	IF	CITATIONS
91	Lymphoid Cell Surface Interaction Structures Detected Using Cytolysis-Inhibiting Monoclonal Antibodies. Immunological Reviews, 1982, 68, 5-42.	6.0	146
92	LFA-1 but not Lyt-2 is associated with killing activity of cytotoxic T lymphocyte hybridomas. Nature, 1982, 300, 357-360.	27.8	26
93	Mechanism of T Cell-Mediated Cytolysis: An Investigation of Cells and Stages Affected by Cytolysis-Inhibiting Monoclonal Antibodies. Advances in Experimental Medicine and Biology, 1982, 146, 469-485.	1.6	4
94	Functional Relationships of Lymphocyte Membrane Structures Probed with Cytolysis and/or Proliferation-Inhibiting H35-27.9 and H35-89.9 Monoclonal Antibodies. Advances in Experimental Medicine and Biology, 1982, 146, 487-503.	1.6	1
95	Cytolytic T Cell Clones against H-2I Region Products: An Analysis Using Monoclonal Antibodies against Ia, Lyt-2 and P94, 180 Cell Surface Antigens. Advances in Experimental Medicine and Biology, 1982, 146, 505-519.	1.6	3
96	The Differential Effects of Distinct Cytolysis-Inhibiting Monoclonal Antibodies on Growth and on Cytolytic Activity of T Cell Clones. Advances in Experimental Medicine and Biology, 1982, 146, 521-532.	1.6	4
97	Sequential Analysis of T Cell-Mediated Cytolysis: A Brief Reminder of Some Possibly Informative Markers at the Recognition and Lethal Hit Stages. Advances in Experimental Medicine and Biology, 1982, 146, 111-119.	1.6	4
98	Specific cooperative induction by KLH or invertebrate hemolymphs of mouse polyclonal T-cell-mediated cytolysis. Cellular Immunology, 1981, 58, 333-344.	3.0	4
99	Production and Main Characteristics of a Fetal Calf Serum-specific Cell Line that Induces T and B Cell Differentiation. Scandinavian Journal of Immunology, 1980, 12, 401-409.	2.7	15
100	Cytotoxic and fluorescent assays for thymocyte subpopulations differing in surface thy-1 level. Cell Biophysics, 1979, 1, 255-270.	0.4	11
101	Cell-mediated cytostasis: A critical analysis of methodological problems. Cellular Immunology, 1979, 45, 1-14.	3.0	10
102	T-CELL-MEDIATED CYTOLYSIS : FROM THE LYSIS OF H-2 NEGATIVE TARGET CELLS TO THE INDUCTIVE EFFECT OF XENOGENEIC SERUM. , 1979, , 595-600.		0
103	Cell membrane-mediated cytolysis by membranes from noncytolytic cells. European Journal of Immunology, 1978, 8, 71-75.	2.9	8
104	Mechanism of T cell-mediated cytolysis: the differential impact of cytochalasins at the recognition and lethal hit stages. European Journal of Immunology, 1978, 8, 302-309.	2.9	25
105	T-cell-mediated cytotoxic immune responses to F9 teratocarcinoma cells: cytolytic effector T cells lyse H-2-negative F9 cells and syngeneic spermatogonia Journal of Experimental Medicine, 1978, 147, 251-264.	8.5	35
106	Requirement for hexose, unrelated to energy provision, in T-cell-mediated cytolysis at the lethal hit stage Journal of Experimental Medicine, 1978, 147, 1551-1567.	8.5	17
107	Mechanism of T-Cell-Mediated Cytolysis: The Lethal Hit Stage. , 1977, 7, 273-300.		96
108	Sensitivity of H–2-less target cells and role of H–2 in T-cell-mediated cytolysis. Nature, 1976, 262, 693-695.	27.8	24

#	Article	IF	CITATIONS
109	The lethal hit stage of mouse T and non-T cell-mediated cytolysis: differences in cation requirements and characterization of an analytical "cation pulse―method. European Journal of Immunology, 1976, 6, 31-37.	2.9	91
110	Divalent Cation Requirements as a Tool for the Study of Cell-Mediated Cytotoxicity Systems. , 1976, 66, 465-470.		3
111	Functional fractionation of human cytotoxic cells using differences in their cation requirements. Nature, 1975, 255, 491-493.	27.8	24
112	Sensitivity of cytotoxic T cells to T-cell mediated cytotoxicity. Nature, 1974, 252, 81-83.	27.8	64
113	Immunoglobulin-binding factor present on and produced by thymus-processed lymphocytes (T cells). Cellular Immunology, 1974, 11, 442-455.	3.0	130
114	Cytotoxic immune cells with specificity for defined soluble antigens. Cellular Immunology, 1973, 9, 198-210.	3.0	11
115	Cytotoxic immune cells with specificity for defined soluble antigens. Cellular Immunology, 1973, 9, 211-225.	3.0	30
116	Further evidence for autonomy of T cells mediating specific in vitro cytotoxicity: Efficiency of very small amounts of highly purified T cells. Cellular Immunology, 1973, 9, 127-141.	3.0	105
117	The extent of specific adsorption of cytotoxic educated thymus cells: Evolution with time and number of injected cells. Cellular Immunology, 1973, 7, 213-221.	3.0	9
118	CELLS MEDIATING SPECIFIC IN VITRO CYTOTOXICITY. Journal of Experimental Medicine, 1972, 135, 890-906.	8.5	178
119	Specific adsorption of cytotoxic thymus-processed lymphocytes (T cells) on glutaraldehyde-fixed fibroblast monolayers. European Journal of Immunology, 1972, 2, 380-383.	2.9	33
120	Autonomy of thymus-processed lymphocytes (T cells) for their education into cytotoxic cells. European Journal of Immunology, 1972, 2, 498-501.	2.9	19
121	CELLS MEDIATING SPECIFIC IN VITRO CYTOTOXICITY. Journal of Experimental Medicine, 1971, 134, 1385-1402.	8.5	136