
Kevin M Crofton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Computational Toxicology, 2022, 22, 100223.	3.3	15
2	Development of Integrated Approaches to Testing and Assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA Journal, 2021, 19, e06599.	1.8	14
3	External Scientific Report on the Interpretation of Data from the Developmental Neurotoxicity In Vitro Testing Assays for Use in Integrated Approaches for Testing and Assessment. EFSA Supporting Publications, 2021, 18, .	0.7	11
4	Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with <i>in Vitro</i> Testing and Adverse Outcome Pathway Approaches. Environmental Health Perspectives, 2019, 127, 95001.	6.0	106
5	Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. Environmental Health Perspectives, 2019, 127, 97009.	6.0	56
6	International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing. Toxicological Sciences, 2019, 167, 45-57.	3.1	48
7	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	2.8	90
8	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	1.5	121
9	Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays. NeuroToxicology, 2017, 60, 234-239.	3.0	18
10	FutureTox III: Bridges for Translation. Toxicological Sciences, 2017, 155, 22-31.	3.1	22
11	Comment on "On the Utility of ToxCastâ"¢ and ToxPi as Methods for Identifying New Obesogensâ€. Environmental Health Perspectives, 2017, 125, A8-A11.	6.0	6
12	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	6.0	74
13	ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology, 2016, 29, 1225-1251.	3.3	456
14	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on <i>In Vitro</i> Assay Activity Across a Diverse Chemical and Assay Space. Toxicological Sciences, 2016, 152, 323-339.	3.1	171
15	Environmentally relevant pyrethroid mixtures: A study on the correlation of blood and brain concentrations of a mixture of pyrethroid insecticides to motor activity in the rat. Toxicology, 2016, 359-360, 19-28.	4.2	18
16	Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicological Sciences, 2016, 151, 160-180.	3.1	95
17	Developmental Neurotoxicology: History and Outline of Developmental Neurotoxicity Study Guidelines. Food Safety (Tokyo, Japan), 2015, 3, 48-61.	1.8	7
18	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 <i>In Vitro</i> High-Throughput Screening Assays for the Estrogen Receptor. Toxicological Sciences, 2015, 148, 137-154.	3.1	251

#	Article	IF	CITATIONS
19	Putative adverse outcome pathways relevant to neurotoxicity. Critical Reviews in Toxicology, 2015, 45, 83-91.	3.9	92
20	International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Archives of Toxicology, 2015, 89, 269-287.	4.2	130
21	Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicology and Teratology, 2015, 52, 25-35.	2.4	73
22	The Human Toxome Project. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 112-124.	1.5	52
23	<i>In Vitro</i> and Modelling Approaches to Risk Assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 69-76.	2.5	114
24	Environmentally relevant mixing ratios in cumulative assessments: A study of the kinetics of pyrethroids and their ester cleavage metabolites in blood and brain; and the effect of a pyrethroid mixture on the motor activity of rats. Toxicology, 2014, 320, 15-24.	4.2	25
25	Development of a Thyroperoxidase Inhibition Assay for High-Throughput Screening. Chemical Research in Toxicology, 2014, 27, 387-399.	3.3	70
26	Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regulatory Toxicology and Pharmacology, 2014, 70, 629-640.	2.7	291
27	Pathways of Toxicity. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 53-61.	1.5	75
28	International STakeholder NETwork (ISTNET) for creating a developmental neurotoxicity testing (DNT) roadmap for regulatory purposes. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 223-224.	1.5	15
29	Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicology in Vitro, 2013, 27, 2049-2060.	2.4	45
30	Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicology in Vitro, 2013, 27, 1320-1346.	2.4	165
31	Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicology, 2013, 312, 97-107.	4.2	37
32	In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis. Toxicological Sciences, 2013, 131, 40-55.	3.1	67
33	Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard Assessments. Environmental Health Perspectives, 2013, 121, 1002-1010.	6.0	87
34	Using <i>in Vitro</i> High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals. Environmental Health Perspectives, 2013, 121, 7-14.	6.0	134
35	Evaluation of Iodide Deficiency in the Lactating Rat and Pup Using a Biologically Based Dose-Response Model*. Toxicological Sciences, 2013, 132, 75-86.	3.1	18
36	An Empirical Approach to Sufficient Similarity: Combining Exposure Data and Mixtures Toxicology Data. Risk Analysis, 2013, 33, 1582-1595.	2.7	18

#	Article	IF	CITATIONS
37	An Animal Model of Marginal Iodine Deficiency During Development: The Thyroid Axis and Neurodevelopmental Outcome*. Toxicological Sciences, 2013, 132, 177-195.	3.1	45
38	Environmentally Relevant Mixtures in Cumulative Assessments: An Acute Study of Toxicokinetics and Effects on Motor Activity in Rats Exposed to a Mixture of Pyrethroids. Toxicological Sciences, 2012, 130, 309-318.	3.1	49
39	Developmental neurotoxicity guideline study: Issues with methodology, evaluation and regulation*. Congenital Anomalies (discontinued), 2012, 52, 122-128.	0.6	71
40	Developmental neurotoxicity testing: A path forward. Congenital Anomalies (discontinued), 2012, 52, 140-146.	0.6	94
41	Juvenile toxicity testing protocols for chemicals. Reproductive Toxicology, 2012, 34, 482-486.	2.9	15
42	Optimal Design for the Precise Estimation of an Interaction Threshold: The Impact of Exposure to a Mixture of 18 Polyhalogenated Aromatic Hydrocarbons. Risk Analysis, 2012, 32, 1784-1797.	2.7	1
43	Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. Toxicology, 2012, 300, 31-45.	4.2	104
44	Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 202-215.	1.5	101
45	Additivity of Pyrethroid Actions on Sodium Influx in Cerebrocortical Neurons in Primary Culture. Environmental Health Perspectives, 2011, 119, 1239-1246.	6.0	46
46	Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat. Toxicology, 2011, 290, 1-6.	4.2	56
47	Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regulatory Toxicology and Pharmacology, 2011, 60, S1-S14.	2.7	252
48	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environmental Toxicology and Chemistry, 2011, 30, 9-21.	4.3	58
49	Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment. Critical Reviews in Toxicology, 2011, 41, 369-383.	3.9	132
50	Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 9-15.	1.5	88
51	Comparison of PC12 and cerebellar granule cell cultures for evaluating neurite outgrowth using high content analysis. Neurotoxicology and Teratology, 2010, 32, 25-35.	2.4	61
52	Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environmental Toxicology and Chemistry, 2010, 29, 2840-2844.	4.3	67
53	Splice variant specific increase in Ca ²⁺ /calmodulinâ€dependent protein kinase 1â€gamma mRNA expression in response to acute pyrethroid exposure. Journal of Biochemical and Molecular Toxicology, 2010, 24, 174-186.	3.0	2
54	In Utero and Lactational Exposure to Bisphenol A, In Contrast to Ethinyl Estradiol, Does Not Alter Sexually Dimorphic Behavior, Puberty, Fertility, and Anatomy of Female LE Rats. Toxicological Sciences, 2010, 114, 133-148.	3.1	165

#	Article	IF	CITATIONS
55	Short-term Exposure to Triclosan Decreases Thyroxine In Vivo via Upregulation of Hepatic Catabolism in Young Long-Evans Rats. Toxicological Sciences, 2010, 113, 367-379.	3.1	121
56	Rebuttal of "Flawed Experimental Design Reveals the Need for Guidelines Requiring Appropriate Positive Controls in Endocrine Disruption Research―by vom Saal. Toxicological Sciences, 2010, 115, 614-620.	3.1	19
57	Predictive Modeling of a Mixture of Thyroid Hormone Disrupting Chemicals That Affect Production and Clearance of Thyroxine. International Journal of Toxicology, 2009, 28, 368-381.	1.2	28
58	Thyroid-Disrupting Chemicals: Interpreting Upstream Biomarkers of Adverse Outcomes. Environmental Health Perspectives, 2009, 117, 1033-1041.	6.0	228
59	Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats. Environmental Health Perspectives, 2009, 117, 1563-1570.	6.0	51
60	In Vivo Acute Exposure to Polychlorinated Biphenyls: Effects on Free and Total Thyroxine in Rats. International Journal of Toxicology, 2009, 28, 382-391.	1.2	8
61	The Effects of Triclosan on Puberty and Thyroid Hormones in Male Wistar Rats. Toxicological Sciences, 2009, 107, 56-64.	3.1	231
62	A Retrospective Performance Assessment of the Developmental Neurotoxicity Study in Support of OECD Test Guideline 426. Environmental Health Perspectives, 2009, 117, 17-25.	6.0	147
63	Thyroid disrupting chemicals: mechanisms and mixtures. Journal of Developmental and Physical Disabilities, 2008, 31, 209-223.	3.6	201
64	Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin. BMC Genomics, 2008, 9, 546.	2.8	19
65	Undertaking positive control studies as part of developmental neurotoxicity testing. Neurotoxicology and Teratology, 2008, 30, 266-287.	2.4	47
66	Identification and interpretation of developmental neurotoxicity effects. Neurotoxicology and Teratology, 2008, 30, 349-381.	2.4	37
67	Meeting Report: Moving Upstream—Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making. Environmental Health Perspectives, 2008, 116, 1568-1575.	6.0	68
68	Inhalational Exposure to Carbonyl Sulfide Produces Altered Brainstem Auditory and Somatosensory-Evoked Potentials in Fischer 344N Rats. Toxicological Sciences, 2007, 95, 118-135.	3.1	17
69	The Flame Retardants, Polybrominated Diphenyl Ethers, Are Pregnane X Receptor Activators. Toxicological Sciences, 2007, 97, 94-102.	3.1	129
70	Low-Dose Effects of Ammonium Perchlorate on the Hypothalamic-Pituitary-Thyroid Axis of Adult Male Rats Pretreated with PCB126. Toxicological Sciences, 2007, 97, 308-317.	3.1	29
71	Concentration-dependent accumulation of [3H]-deltamethrin in sodium channel Nav1.2/ \hat{l}^21 expressing Xenopus laevis oocytes. Toxicology in Vitro, 2007, 21, 1672-1677.	2.4	4
72	Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine. Environmental Toxicology and Pharmacology, 2007, 24, 194-197.	4.0	193

#	Article	IF	CITATIONS
73	Workgroup Report: IncorporatingIn VitroAlternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies. Environmental Health Perspectives, 2007, 115, 924-931.	6.0	145
74	Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279–289, 2006]. Toxicology and Applied Pharmacology, 2007, 218, 96-97.	2.8	2
75	The impact of exposure to a mixture of eighteen polyhalogenated aromatic hydrocarbons on thyroid function: Estimation of an interaction threshold. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 96-111.	1.4	9
76	Effect of PCB 126 on Hepatic Metabolism of Thyroxine and Perturbations in the Hypothalamic-Pituitary-Thyroid Axis in the Rat. Toxicological Sciences, 2006, 90, 87-95.	3.1	65
77	Behavioral test methods workshop. Neurotoxicology and Teratology, 2005, 27, 417-427.	2.4	32
78	NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of amphetamine and methamphetamine. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2005, 74, 471-584.	1.4	40
79	Thyroid-Hormone–Disrupting Chemicals: Evidence for Dose-Dependent Additivity or Synergism. Environmental Health Perspectives, 2005, 113, 1549-1554.	6.0	179
80	Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs. Environmental Health Perspectives, 2005, 113, 123-136.	6.0	434
81	Mode of Action: Neurotoxicity Induced by Thyroid Hormone Disruption During Development—Hearing Loss Resulting From Exposure to PHAHs. Critical Reviews in Toxicology, 2005, 35, 757-769.	3.9	69
82	NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of methylphenidate. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2005, 74, 300-381.	1.4	25
83	Overview: Using Mode of Action and Life Stage Information to Evaluate the Human Relevance of Animal Toxicity Data. Critical Reviews in Toxicology, 2005, 35, 663-672.	3.9	166
84	Time and concentration dependent accumulation of [3H]-deltamethrin in Xenopus laevis oocytes☆. Toxicology Letters, 2005, 157, 79-88.	0.8	13
85	Mode of Action: Developmental Thyroid Hormone Insufficiency—Neurological Abnormalities Resulting From Exposure to Propylthiouracil. Critical Reviews in Toxicology, 2005, 35, 771-781.	3.9	88
86	Accumulation of PBDE-47 in Primary Cultures of Rat Neocortical Cells. Toxicological Sciences, 2004, 82, 164-169.	3.1	57
87	Assessment of DE-71, a Commercial Polybrominated Diphenyl Ether (PBDE) Mixture, in the EDSP Male and Female Pubertal Protocols. Toxicological Sciences, 2004, 78, 144-155.	3.1	235
88	Comparative Responsiveness of Hypothyroxinemia and Hepatic Enzyme Induction in Long-Evans Rats Versus C57BL/6J Mice Exposed to TCDD-like and Phenobarbital-like Polychlorinated Biphenyl Congeners. Toxicological Sciences, 2002, 68, 372-380.	3.1	87
89	Perinatal Exposure to Aroclor 1254 Impairs Distortion Product Otoacoustic Emissions (DPOAEs) in Rats. Toxicological Sciences, 2002, 68, 458-464.	3.1	51
90	Developmental Exposure to Brominated Diphenyl Ethers Results in Thyroid Hormone Disruption. Toxicological Sciences, 2002, 66, 105-116.	3.1	448

#	Article	IF	CITATIONS
91	Methods to Identify and Characterize Developmental Neurotoxicity for Human Health Risk Assessment. I: Behavioral Effects. Environmental Health Perspectives, 2001, 109, 79.	6.0	19
92	Spatial Reversal Learning in Aroclor 1254-Exposed Rats: Sex-Specific Deficits in Associative Ability and Inhibitory Control. Toxicology and Applied Pharmacology, 2001, 174, 188-198.	2.8	95
93	Flash-, somatosensory-, and peripheral nerve-evoked potentials in rats perinatally exposed to Aroclor 1254. Neurotoxicology and Teratology, 2001, 23, 591-601.	2.4	12
94	Effects of Short-Term in Vivo Exposure to Polybrominated Diphenyl Ethers on Thyroid Hormones and Hepatic Enzyme Activities in Weanling Rats. Toxicological Sciences, 2001, 61, 76-82.	3.1	410
95	Hearing loss following exposure during development to polychlorinated biphenyls: A cochlear site of action. Hearing Research, 2000, 144, 196-204.	2.0	87
96	Low-Frequency Hearing Loss Following Perinatal Exposure to 3,3′,4,4′,5-Pentachlorobiphenyl (PCB 126) in Rats. Neurotoxicology and Teratology, 1999, 21, 299-301.	2.4	42
97	Thyroxine Replacement Attenuates Hypothyroxinemia, Hearing Loss, and Motor Deficits Following Developmental Exposure to Aroclor 1254 in Rats,. Toxicological Sciences, 1998, 45, 94-105.	3.1	68
98	Thyroxine Replacement Attenuates Hypothyroxinemia, Hearing Loss, and Motor Deficits Following Developmental Exposure to Aroclor 1254 in Rats. Toxicological Sciences, 1998, 45, 94-105.	3.1	117
99	Trichloroethylene Ototoxicity: Evidence for a Cochlear Origin. Toxicological Sciences, 1998, 42, 28-35.	3.1	45
100	Setting Exposure Standards: A Decision Process. Environmental Health Perspectives, 1996, 104, 401.	6.0	3
101	Developmental Exposure to Aroclor 1254 Produces Low-Frequency Alterations in Adult Rat Brainstem Auditory Evoked Responses. Toxicological Sciences, 1996, 33, 120-128.	3.1	20
102	Characterization of Olfactory Deficits in the Rat Following Administration of 2,6-Dichlorobenzonitrile (Dichlobenil), 3,3′-Iminodipropionitrile, or Methimazole. Toxicological Sciences, 1996, 29, 71-77.	3.1	1
103	Use of Biological Markers in the Quantitative Assessment of Neurotoxic Risk. , 1995, , 789-803.		1
104	Developmental Neurotoxicity: Evaluation of Testing Procedures with Methylazoxymethanol and Methylmercury. Toxicological Sciences, 1994, 23, 447-464.	3.1	0
105	Effects of 3,3′-iminodipropionitrile on acquisition and performance of spatial tasks in rats. Neurotoxicology and Teratology, 1994, 16, 583-591.	2.4	12
106	Effects of toluene inhalation on detection of auditory signals in rats. Neurotoxicology and Teratology, 1994, 16, 149-160.	2.4	85
107	Solvent-induced ototoxicity in rats: An atypical selective mid-frequency hearing deficit. Hearing Research, 1994, 80, 25-30.	2.0	134
108	Developmental Neurotoxicity: Evaluation of Testing Procedures with Methylazoxymethanol and Methylmercury. Fundamental and Applied Toxicology, 1994, 23, 447-464.	1.8	60

#	Article	IF	CITATIONS
109	The sensitivity to 3,3′-iminodipropionitrile differs for high-and midfrequency hearing loss in the developing rat. Hearing Research, 1993, 69, 221-228.	2.0	19
110	Characterization of Disulfoton-Induced Behavioral and Neurochemical Effects Following Repeated Exposure. Toxicological Sciences, 1993, 20, 163-169.	3.1	1
111	Triadimefon, a triazole fungicide, induces stereotyped behavior and alters monoamine metabolism in rats. Toxicology and Applied Pharmacology, 1990, 102, 474-485.	2.8	43
112	Acute effects of amitraz on the acoustic startle response and motor activity. Pest Management Science, 1989, 27, 1-11.	0.4	4
113	The Effects of Type I and II Pyrethroids on Motor Activity and the Acoustic Startle Response in the Rat. Toxicological Sciences, 1988, 10, 624-634.	3.1	2
114	Pyrethroid insecticides and radioligand displacement from the gaba receptor chloride ionophore complex. Toxicology Letters, 1987, 35, 183-190.	0.8	27
115	Pyrethroid effects on schedule-controlled behavior: Time and dosage relationships. Neurotoxicology and Teratology, 1987, 9, 387-394.	2.4	29
116	Postnatal evaluation of prenatal exposure to p-xylene in the rat. Toxicology Letters, 1986, 34, 223-229.	0.8	12
117	Effects of two pyrethroid insecticides on motor activity and the acoustic startle response in the rat. Toxicology and Applied Pharmacology, 1984, 75, 318-328.	2.8	74
118	Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX: Alternatives To Animal Experimentation, 0, , 9-15.	1.5	81