Cristiano Zonta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018744/publications.pdf

Version: 2024-02-01

80 papers

2,745 citations

147801 31 h-index 50 g-index

92 all docs 92 docs citations 92 times ranked 2915 citing authors

#	Article	IF	Citations
1	Helicity control of a perfluorinated carbon chain within a chiral supramolecular cage monitored by VCD. Chemical Communications, 2022, 58, 2152-2155.	4.1	8
2	Elucidating Sulfide Activation Mode in Metal-Catalyzed Sulfoxidation Reactivity. Inorganic Chemistry, 2022, 61, 4494-4501.	4.0	5
3	Chiroptical Enhancement of Chiral Dicarboxylic Acids from Confinement in a Stereodynamic Supramolecular Cage. ACS Sensors, 2022, 7, 1390-1394.	7.8	16
4	Tris(2-pyridylmethyl)amines as emerging scaffold in supramolecular chemistry. Coordination Chemistry Reviews, 2021, 427, 213558.	18.8	24
5	Electrocatalytic hydrogen evolution using hybrid electrodes based on single-walled carbon nanohorns and cobalt(<scp>ii</scp>) polypyridine complexes. Journal of Materials Chemistry A, 2021, 9, 20032-20039.	10.3	10
6	Mixed Multimetallic tris (2â€pyridylmethyl)amine Based Complexes: Synthesis and Chiroptical Properties. European Journal of Inorganic Chemistry, 2021, 2021, 2942-2946.	2.0	1
7	Dissection of the Polar and Nonâ€Polar Contributions to Aromatic Stacking Interactions in Solution. Angewandte Chemie, 2021, 133, 24064.	2.0	2
8	Dissection of the Polar and Nonâ€Polar Contributions to Aromatic Stacking Interactions in Solution. Angewandte Chemie - International Edition, 2021, 60, 23871-23877.	13.8	14
9	Chiral recognition <i>via</i> a stereodynamic vanadium probe using the electronic circular dichroism effect in differential Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 23336-23340.	2.8	7
10	Straight from the bottle! Wine and juice dicarboxylic acids as templates for supramolecular cage self-assembly. Chemical Communications, 2021, 57, 10019-10022.	4.1	10
11	Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45968-45975.	8.0	3
12	Tripodal gold(<scp>i</scp>) polypyridyl complexes and their Cu ⁺ and Zn ²⁺ heterometallic derivatives. Effects on luminescence. Dalton Transactions, 2020, 49, 14613-14625.	3.3	5
13	Testing the vibrational exciton and the local mode models on the instructive cases of dicarvone, dipinocarvone, and dimenthol vibrational circular dichroism spectra. Chirality, 2020, 32, 907-921.	2.6	5
14	Heteroâ€Coencapsulation within a Supramolecular Cage: Moving away from the Statistical Distribution of Different Guests. Chemistry - A European Journal, 2020, 26, 9454-9458.	3.3	7
15	Tris-pyridylmethylamine (TPMA) complexes functionalized with persistent nitronyl nitroxide organic radicals. Dalton Transactions, 2020, 49, 10011-10016.	3.3	3
16	A Diastereodynamic Probe Transducing Molecular Length into Chiroptical Readout. Journal of the American Chemical Society, 2019, 141, 11963-11969.	13.7	29
17	Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions. Chemical Science, 2019, 10, 1466-1471.	7.4	20
18	Extending substrate sensing capabilities of zinc tris(2â€pyridylmethyl)amineâ€based stereodynamic probe. Chirality, 2019, 31, 375-383.	2.6	4

#	Article	IF	Citations
19	Supramolecular cages as differential sensors for dicarboxylate anions: guest length sensing using principal component analysis of ESI-MS and ¹ H-NMR raw data. Chemical Science, 2019, 10, 3523-3528.	7.4	38
20	Binding Profiles of Selfâ€Assembled Supramolecular Cages from ESIâ€MS Based Methodology. Chemistry - A European Journal, 2018, 24, 2936-2943.	3.3	25
21	Efficient Vanadiumâ€Catalyzed Aerobic Câ^'C Bond Oxidative Cleavage of Vicinal Diols. Advanced Synthesis and Catalysis, 2018, 360, 3286-3296.	4.3	38
22	Distance between Metal Centres Affects Catalytic Efficiency of Dinuclear Co ^{III} Complexes in the Hydrolysis of a Phosphate Diester. European Journal of Organic Chemistry, 2018, 2018, 5375-5381.	2.4	11
23	A stereodynamic fluorescent probe for amino acids. Circular dichroism and circularly polarized luminescence analysis. Chirality, 2018, 30, 65-73.	2.6	19
24	Diasteroselective multi-component assemblies from dynamic covalent imine condensation and metal-coordination chemistry: mechanism and narcissistic stereochemistry self-sorting. RSC Advances, 2018, 8, 19494-19498.	3.6	11
25	Secondâ€Generation Tris(2â€pyridylmethyl)amineâ€"Zinc Complexes as Probes for Enantiomeric Excess Determination of Amino Acids. European Journal of Organic Chemistry, 2017, 2017, 1438-1442.	2.4	19
26	Vanadium(V) Catalysts with High Activity for the Coupling of Epoxides and CO ₂ : Characterization of a Putative Catalytic Intermediate. ACS Catalysis, 2017, 7, 2367-2373.	11.2	93
27	Triggering Assembly and Disassembly of a Supramolecular Cage. Journal of the American Chemical Society, 2017, 139, 6456-6460.	13.7	59
28	Concentration-Independent Stereodynamic $\langle i \rangle g \langle i \rangle$ -Probe for Chiroptical Enantiomeric Excess Determination. Journal of the American Chemical Society, 2017, 139, 15616-15619.	13.7	49
29	Tuning the reactivity and efficiency of copper catalysts for atom transfer radical polymerization by synthetic modification of tris(2-methylpyridyl)amine. Polymer, 2017, 128, 169-176.	3.8	41
30	Synthesis, Characterization and Catalytic Activity of a Tungsten(VI) Amino Triphenolate Complex. Catalysis Letters, 2017, 147, 2313-2318.	2.6	9
31	Cobalt, nickel, and iron complexes of 8-hydroxyquinoline-di(2-picolyl)amine for light-driven hydrogen evolution. Dalton Transactions, 2017, 46, 16455-16464.	3.3	24
32	Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: Nâ^'H versus Câ^'H Switch in the Oxidation of Lactams by Dioxirans. Chemistry - A European Journal, 2017, 23, 259-262.	3.3	21
33	Photoinduced hydrogen evolution with new tetradentate cobalt(<scp>ii</scp>) complexes based on the TPMA ligand. Dalton Transactions, 2016, 45, 14764-14773.	3.3	38
34	Discrimination of Octahedral versus Trigonal Bipyramidal Coordination Geometries of Homogeneous TilV, VV, and MoVIAmino Triphenolate Complexes through Nitroxyl Radical Units. European Journal of Inorganic Chemistry, 2016, 2016, 4968-4973.	2.0	10
35	Discrimination of Octahedral versus Trigonal Bipyramidal Coordination Geometries of Homogeneous TilV , VV , and MoVI Amino Triphenolate Complexes through Nitroxyl Radical Units. European Journal of Inorganic Chemistry, 2016, 2016, 4939-4939.	2.0	O
36	Multimetallic Architectures from the Selfâ€assembly of Amino Acids and Tris(2â€pyridylmethyl)amine Zinc(II) Complexes: Circular Dichroism Enhancement by Chromophores Organization. Chemistry - A European Journal, 2016, 22, 6515-6518.	3.3	40

#	Article	IF	Citations
37	Co(<scp>ii</scp>)-induced giant vibrational CD provides a new design of methods for rapid and sensitive chirality recognition. Chemical Communications, 2016, 52, 8428-8431.	4.1	39
38	Effective bromo and chloro peroxidation catalysed by tungsten(<scp>vi</scp>) amino triphenolate complexes. Dalton Transactions, 2016, 45, 14603-14608.	3.3	22
39	Mononuclear Iron(III) Complexes as Functional Models of Catechol Oxidases and Catalases. European Journal of Inorganic Chemistry, 2015, 2015, 3478-3484.	2.0	14
40	Vanadium catalyzed aerobic carbon–carbon cleavage. Coordination Chemistry Reviews, 2015, 301-302, 147-162.	18.8	63
41	Revisiting the Hammett <i> Parameter for the Determination of Philicity: Nucleophilic Substitution with Inverse Charge Interaction. Angewandte Chemie - International Edition, 2013, 52, 2911-2914.</i>	13.8	10
42	Nonâ€covalent Activation of a Titanium(IV) Oxygenâ€Transfer Catalyst. Chemistry - A European Journal, 2013, 19, 9438-9441.	3.3	14
43	Determination of Amino Acid Enantiopurity and Absolute Configuration: Synergism between Configurationally Labile Metalâ€Based Receptors and Dynamic Covalent Interactions. Chemistry - A European Journal, 2013, 19, 16809-16813.	3.3	47
44	(+)-syn-Benzotriborneol an enantiopure C3-symmetric receptor for water. Organic and Biomolecular Chemistry, 2012, 10, 2464.	2.8	9
45	Reactivity Control in Iron(III) Amino Triphenolate Complexes: Comparison of Monomeric and Dimeric Complexes. Inorganic Chemistry, 2012, 51, 10639-10649.	4.0	66
46	Benzocyclotrimers: From the Millsâ^'Nixon Effect to Gas Hosting. Accounts of Chemical Research, 2011, 44, 416-423.	15.6	27
47	Mechanistic aspects of vanadium catalysed oxidations with peroxides. Coordination Chemistry Reviews, 2011, 255, 2165-2177.	18.8	189
48	Cooperativity in benzotriazole–amine complexes: allosteric tuning of molecular recognition interfaces. Journal of Physical Organic Chemistry, 2011, 24, 122-128.	1.9	2
49	Effective Synthesis of <i>ortho</i> ‧ubstituted Trithiophenol Amines by Miyazaki–Newman–Kwart Rearrangement. European Journal of Organic Chemistry, 2011, 2011, 5636-5640.	2.4	10
50	Enantiopure Ti(IV) amino triphenolate complexes as NMR chiral solvating agents. Chirality, 2011, 23, 796-800.	2.6	23
51	Recent advances in vanadium catalyzed oxygen transfer reactions. Coordination Chemistry Reviews, 2011, 255, 2345-2357.	18.8	155
52	Molybdenum(VI) Amino Triphenolate Complexes as Catalysts for Sulfoxidation, Epoxidation and Haloperoxidation. Advanced Synthesis and Catalysis, 2010, 352, 2937-2942.	4.3	53
53	Stereoselective Control by Faceâ€toâ€Face Versus Edgeâ€toâ€Face Aromatic Interactions: The Case of <i>C</i> ₃ â€Ti ^{IV} Amino Trialkolate Sulfoxidation Catalysts. Chemistry - A European Journal, 2010, 16, 645-654.	3.3	33
54	Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide. Molecules, 2010, 15, 226-232.	3.8	8

#	Article	IF	CITATIONS
55	Ti(iv)-amino triphenolate complexes as effective catalysts for sulfoxidation. Dalton Transactions, 2010, 39, 7384.	3.3	46
56	1-Bromo-2-(diphenylphosphinoyl)ethyne and 1-bromo-2-(p-tolylsulfinyl)ethyne: versatile reagents eventually leading to benzocyclotrimers. Tetrahedron Letters, 2009, 50, 1973-1976.	1.4	9
57	Role of Intermolecular Interactions in Oxygen Transfer Catalyzed by Silsesquioxane Trisilanolate Vanadium(V). Inorganic Chemistry, 2009, 48, 4724-4728.	4.0	31
58	Amine triphenolate complexes: synthesis, structure and catalytic activity. Dalton Transactions, 2009, , 5265.	3.3	78
59	<i>C</i> ₃ â€Symmetric Titanium(IV) Triphenolate Amino Complexes for a Fast and Effective Oxidation of Secondary Amines to Nitrones with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 2503-2506.	4.3	43
60	C3 Vanadium(V) Amine Triphenolate Complexes: Vanadium Haloperoxidase Structural and Functional Models. Inorganic Chemistry, 2008, 47, 8616-8618.	4.0	103
61	Substituent effects on aromatic stacking interactions. Organic and Biomolecular Chemistry, 2007, 5, 1062.	2.8	221
62	Stereoselective Iodocyclization of (S)-Allylalanine Derivatives: \hat{A} \hat{I}^3 -Lactone vs Cyclic Carbamate Formation. Organic Letters, 2007, 9, 2365-2368.	4.6	25
63	A NovelC3-Symmetric Triol as Chiral Receptor for Ammonium Ions. European Journal of Organic Chemistry, 2007, 2007, 283-291.	2.4	35
64	Thione–Thiol Rearrangement: Miyazaki–Newman–Kwart Rearrangement and Others. Topics in Current Chemistry, 2006, 275, 131-161.	4.0	33
65	Benzotriazole Complexes with Amines and Phenol:  Cooperativity Mediated by Induction Effects in the Crystal State. Organic Letters, 2006, 8, 1577-1579.	4.6	5
66	Molecular dynamics simulation of small water-binding cavitands. Chemical Physics Letters, 2006, 423, 312-316.	2.6	6
67	A Haigh–Mallion-Based Approach for the Evaluation of the Intensity Factors of Aromatic Rings. European Journal of Organic Chemistry, 2006, 2006, 449-452.	2.4	8
68	Synthesis of 1,5-Substituted Iminodibenzo[b,f][1,5]diazocine, an Analogue of Tröger's Base. European Journal of Organic Chemistry, 2006, 2006, 2987-2990.	2.4	15
69	From structure to chemical shift and vice-versa. Progress in Nuclear Magnetic Resonance Spectroscopy, 2005, 47, 27-39.	7.5	37
70	The Pyrrole Approach toward the Synthesis of Fully Functionalized Cup-Shaped Molecules. Organic Letters, 2005, 7, 1003-1006.	4.6	48
71	Quantification of Functional Group Interactions in Transition States. Journal of the American Chemical Society, 2003, 125, 9936-9937.	13.7	34
72	Complexation-induced chemical shifts—ab initio parameterization of transferable bond anisotropies. Journal of Magnetic Resonance, 2003, 162, 102-112.	2.1	14

#	Article	IF	CITATION
73	The role of the counteranion in the cation-Ï€ interaction. Chemical Communications, 2003, , 834-835.	4.1	37
74	Substituent effects on cation-Â interactions: A quantitative study. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4873-4876.	7.1	120
75	An Evaluation of Force-Field Treatments of Aromatic Interactions. Chemistry - A European Journal, 2002, 8, 2860.	3.3	78
76	anti-Selective Heck-type cyclotrimerization of polycyclic bromoalkenes. Tetrahedron Letters, 2001, 42, 3515-3518.	1.4	31
77	Noncovalent Assembly of [2]Rotaxane Architectures. Angewandte Chemie - International Edition, 2001, 40, 2678-2682.	13.8	96
78	Synthesis of Benzotri(benzonorbornadienes) (BTBNDs): Rigid, Cup-Shaped Molecules with High Electron Density within the Cavity. European Journal of Organic Chemistry, 2000, 2000, 1965-1971.	2.4	39
79	Palladium-catalysed cyclotrimerisation reactions of polycyclic alkenes under the Stille and Grigg coupling conditions. Chemical Communications, 2000, , 1837-1838.	4.1	20
80	Stereochemistry of the cyclotrimerisation of enantiopure polycyclic bromostannylalkenes: Mechanistic considerations on the coupling of alkenyl stannanes by copper(II) nitrate. Tetrahedron Letters, 1999, 40, 8185-8188.	1.4	26