AntÃ³nio Portugal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018200/publications.pdf

Version: 2024-02-01

471509 552781 34 751 17 26 citations h-index g-index papers 35 35 35 681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Application of Biology to Cultural Heritage. Applied Sciences (Switzerland), 2022, 12, 841.	2.5	0
2	Introducing Petrachlorosaceae fam. nov., Petrachloros gen. nov. and Petrachloros mirabilis sp. nov. (Synechococcales, Cyanobacteria) isolated from a Portuguese UNESCO monument. Journal of Phycology, 2022, , .	2.3	0
3	Phototrophic and fungal communities inhabiting the Roman cryptoporticus of the national museum Machado de Castro (UNESCO site, Coimbra, Portugal). World Journal of Microbiology and Biotechnology, 2022, 38, .	3.6	6
4	<i>Parakomarekiella sesnandensis</i> gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). European Journal of Phycology, 2021, 56, 301-315.	2.0	19
5	Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms, 2021, 9, 709.	3.6	20
6	Current Knowledge on the Fungal Degradation Abilities Profiled through Biodeteriorative Plate Essays. Applied Sciences (Switzerland), 2021, 11, 4196.	2.5	17
7	A contribution to understand the Portuguese emblematic Ançã limestone bioreceptivity to fungal colonization and biodeterioration. Journal of Cultural Heritage, 2021, 49, 305-312.	3.3	9
8	Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Applied Sciences (Switzerland), 2021, 11, 10589.	2.5	2
9	Talaromyces saxoxalicus sp. nov., isolated from the limestone walls of the Old Cathedral of Coimbra, Portugal. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	1
10	In vitro analyses of fungi and dolomitic limestone interactions: Bioreceptivity and biodeterioration assessment. International Biodeterioration and Biodegradation, 2020, 155, 105107.	3.9	16
11	High-Quality Draft Genome Sequences of Three Cyanobacteria Isolated from the Limestone Walls of the Old Cathedral of Coimbra, Portugal. Microbiology Resource Announcements, 2020, 9, .	0.6	1
12	Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. International Biodeterioration and Biodegradation, 2020, 149, 104933.	3.9	28
13	Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, 2019, 36, 275-285.	3.3	70
14	Combining an innovative non-invasive sampling method and high-throughput sequencing to characterize fungal communities on a canvas painting. International Biodeterioration and Biodegradation, 2019, 145, 104816.	3.9	20
15	Description of Myxacorys almedinensis sp. nov. (Synechococcales,) Tj ETQq1		14 rgBT /Ov 13
16	Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. International Biodeterioration and Biodegradation, 2019, 142, 91-102.	3.9	51
17	Structural diversity of photoautotrophic populations within the UNESCO site  Old Cathedral of Coimbra' (Portugal), using a combined approach. International Biodeterioration and Biodegradation, 2019, 140, 9-20.	3.9	25
18	High-Quality Draft Genome Sequence of the Microcolonial Black Fungus Aeminium ludgeri DSM 106916. Microbiology Resource Announcements, 2019, 8, .	0.6	6

#	Article	IF	Citations
19	Edible ectomycorrhizal fungi and Cistaceae. A study on compatibility and fungal ecological strategies. PLoS ONE, 2019, 14, e0226849.	2.5	8
20	Contribution to the knowledge of the pollen morphology in the tribe Orobancheae Lam. & DC. (Orobanchaceae). Grana, 2019, 58, 14-44.	0.8	4
21	Fungal stains on paper: is what you see what you get?. Conservar Patrimonio, 2019, 32, 18-27.	0.4	26
22	Description of Aeminiaceae fam. nov., Aeminium gen. nov. and Aeminium ludgeri sp. nov. (Capnodiales), isolated from a biodeteriorated art-piece in the Old Cathedral of Coimbra, Portugal. MycoKeys, 2019, 45, 57-73.	1.9	20
23	Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate?. Journal of Cultural Heritage, 2018, 34, 268-276.	3.3	32
24	Do mycorrhizal fungi create below-ground links between native plants and <i>Acacia longifolia</i> ? A case study in a coastal maritime pine forest in Portugal. Web Ecology, 2018, 18, 105-114.	1.6	4
25	Diversity of fungal species in ancient parchments collections of the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2016, 108, 57-66.	3.9	19
26	A Ni hyperaccumulator and a congeneric non-accumulator reveal equally effective defenses against herbivory. Science of the Total Environment, 2014, 466-467, 11-15.	8.0	17
27	Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiation Physics and Chemistry, 2013, 88, 82-89.	2.8	7
28	Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. International Biodeterioration and Biodegradation, 2013, 84, 250-257.	3.9	40
29	Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation, 2013, 79, 49-55.	3.9	27
30	Characterization of an airborne microbial community: A case study in the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation, 2013, 79, 36-41.	3.9	29
31	Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax. Radiation Physics and Chemistry, 2012, 81, 1943-1946.	2.8	25
32	Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2009, 63, 626-629.	3.9	111
33	Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels. Plant and Soil, 2007, 293, 177-188.	3.7	34
34	Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza, 2007, 17, 677-686.	2.8	42