
AntÃ³nio Portugal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8018200/publications.pdf Version: 2024-02-01

ΔΝΙΤΑΊΟΝΙΟ ΡΟΡΤΙΙΟΝ

#	Article	IF	CITATIONS
1	Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2009, 63, 626-629.	3.9	111
2	Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, 2019, 36, 275-285.	3.3	70
3	Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. International Biodeterioration and Biodegradation, 2019, 142, 91-102.	3.9	51
4	Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza, 2007, 17, 677-686.	2.8	42
5	Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. International Biodeterioration and Biodegradation, 2013, 84, 250-257.	3.9	40
6	Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels. Plant and Soil, 2007, 293, 177-188.	3.7	34
7	Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate?. Journal of Cultural Heritage, 2018, 34, 268-276.	3.3	32
8	Characterization of an airborne microbial community: A case study in the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation, 2013, 79, 36-41.	3.9	29
9	Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. International Biodeterioration and Biodegradation, 2020, 149, 104933.	3.9	28
10	Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. International Biodeterioration and Biodegradation, 2013, 79, 49-55.	3.9	27
11	Fungal stains on paper: is what you see what you get?. Conservar Patrimonio, 2019, 32, 18-27.	0.4	26
12	Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax. Radiation Physics and Chemistry, 2012, 81, 1943-1946.	2.8	25
13	Structural diversity of photoautotrophic populations within the UNESCO site â€~Old Cathedral of Coimbra' (Portugal), using a combined approach. International Biodeterioration and Biodegradation, 2019, 140, 9-20.	3.9	25
14	Combining an innovative non-invasive sampling method and high-throughput sequencing to characterize fungal communities on a canvas painting. International Biodeterioration and Biodegradation, 2019, 145, 104816.	3.9	20
15	Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms, 2021, 9, 709.	3.6	20
16	Description of Aeminiaceae fam. nov., Aeminium gen. nov. and Aeminium ludgeri sp. nov. (Capnodiales), isolated from a biodeteriorated art-piece in the Old Cathedral of Coimbra, Portugal. MycoKeys, 2019, 45, 57-73.	1.9	20
17	Diversity of fungal species in ancient parchments collections of the Archive of the University of Coimbra. International Biodeterioration and Biodegradation, 2016, 108, 57-66.	3.9	19
18	<i>Parakomarekiella sesnandensis</i> gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). European Journal of Phycology, 2021, 56, 301-315.	2.0	19

AntÃ³nio Portugal

#	Article	IF	CITATIONS
19	A Ni hyperaccumulator and a congeneric non-accumulator reveal equally effective defenses against herbivory. Science of the Total Environment, 2014, 466-467, 11-15.	8.0	17
20	Current Knowledge on the Fungal Degradation Abilities Profiled through Biodeteriorative Plate Essays. Applied Sciences (Switzerland), 2021, 11, 4196.	2.5	17
21	In vitro analyses of fungi and dolomitic limestone interactions: Bioreceptivity and biodeterioration assessment. International Biodeterioration and Biodegradation, 2020, 155, 105107.	3.9	16
22	Description of Myxacorys almedinensis sp. nov. (Synechococcales,) Tj ETQqC	0 0 rgBT 0.3	/Overlock 1 13
23	A contribution to understand the Portuguese emblematic Ançã limestone bioreceptivity to fungal colonization and biodeterioration. Journal of Cultural Heritage, 2021, 49, 305-312.	3.3	9
24	Edible ectomycorrhizal fungi and Cistaceae. A study on compatibility and fungal ecological strategies. PLoS ONE, 2019, 14, e0226849.	2.5	8
25	Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiation Physics and Chemistry, 2013, 88, 82-89.	2.8	7
26	High-Quality Draft Genome Sequence of the Microcolonial Black Fungus Aeminium ludgeri DSM 106916. Microbiology Resource Announcements, 2019, 8, .	0.6	6
27	Phototrophic and fungal communities inhabiting the Roman cryptoporticus of the national museum Machado de Castro (UNESCO site, Coimbra, Portugal). World Journal of Microbiology and Biotechnology, 2022, 38, .	3.6	6
28	Contribution to the knowledge of the pollen morphology in the tribe Orobancheae Lam. & DC. (Orobanchaceae). Grana, 2019, 58, 14-44.	0.8	4
29	Do mycorrhizal fungi create below-ground links between native plants and <i>Acacia longifolia</i> ? A case study in a coastal maritime pine forest in Portugal. Web Ecology, 2018, 18, 105-114.	1.6	4
30	Potential Use of Carrageenans against the Limestone Proliferation of the Cyanobacterium Parakomarekiella sesnandensis. Applied Sciences (Switzerland), 2021, 11, 10589.	2.5	2
31	High-Quality Draft Genome Sequences of Three Cyanobacteria Isolated from the Limestone Walls of the Old Cathedral of Coimbra, Portugal. Microbiology Resource Announcements, 2020, 9, .	0.6	1
32	Talaromyces saxoxalicus sp. nov., isolated from the limestone walls of the Old Cathedral of Coimbra, Portugal. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	1
33	Application of Biology to Cultural Heritage. Applied Sciences (Switzerland), 2022, 12, 841.	2.5	0
34	Introducing Petrachlorosaceae fam. nov., Petrachloros gen. nov. and Petrachloros mirabilis sp. nov. (Synechococcales, Cyanobacteria) isolated from a Portuguese UNESCO monument. Journal of Phycology, 2022, , .	2.3	0