Cataldo Tirolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017793/publications.pdf

Version: 2024-02-01

46 papers

2,611 citations

30 h-index 243625 44 g-index

48 all docs

48 docs citations

48 times ranked

3014 citing authors

#	Article	IF	CITATIONS
1	" <i>Reframing</i> ―dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate <i>Nrf2/Wnt</i> driver: Therapeutical implications. Aging Cell, 2022, 21, e13575.	6.7	8
2	Cerebellar degeneration-related protein 1 expression in fibroblasts of patients affected by down syndrome. International Journal of Transgender Health, 2020, 13, 548-555.	2.3	0
3	Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules, 2020, 10, 1327.	4.0	19
4	Humanin gene expression in fibroblast of Down syndrome subjects. International Journal of Medical Sciences, 2020, 17, 320-324.	2.5	12
5	Glia-Derived Extracellular Vesicles in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1941.	2.4	18
6	Boosting Antioxidant Self-defenses by Grafting Astrocytes Rejuvenates the Aged Microenvironment and Mitigates Nigrostriatal Toxicity in Parkinsonian Brain via an Nrf2-Driven Wnt/l²-Catenin Prosurvival Axis. Frontiers in Aging Neuroscience, 2020, 12, 24.	3.4	23
7	Parkinson's disease, aging and adult neurogenesis: Wnt/ $\hat{l}^2\hat{a}$ \in catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 2020, 19, e13101.	6.7	105
8	Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/ \hat{l}^2 -Catenin Signaling. Stem Cells, 2018, 36, 1179-1197.	3.2	49
9	Microglia Polarization, Gene-Environment Interactions and Wnt $\hat{\mathbb{I}}^2$ -Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Frontiers in Aging Neuroscience, 2018, 10, 12.	3.4	71
10	microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 2017, 18, 2698.	4.1	170
11	GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions. Cell Death and Disease, 2016, 7, e2206-e2206.	6.3	67
12	Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 13-26.	3.3	73
13	Wnt/β-Catenin Signaling Is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson's Disease. Stem Cells, 2014, 32, 2147-2163.	3.2	99
14	Aging-Induced <i> Nrf2-ARE </i> Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via <i> PI3K-Wnt/ </i> \hat{I}^2 <i> -Catenin </i> Dysregulation. Journal of Neuroscience, 2013, 33, 1462-1485.	3.6	90
15	Uncovering novel actors in astrocyte–neuron crosstalk in <scp>P</scp> arkinson's disease: the <scp>W</scp> nt∬²â€catenin signaling cascade as the common final pathway for neuroprotection and selfâ€repair. European Journal of Neuroscience, 2013, 37, 1550-1563.	2.6	81
16	Reactive Astrocytes Are Key Players in Nigrostriatal Dopaminergic Neurorepair in the Mptp Mouse Model of Parkinson's Disease: Focus on Endogenous Neurorestoration. Current Aging Science, 2013, 6, 45-55.	1.2	54
17	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/A-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair, Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
18	Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiology of Disease, 2011, 41, 508-527.	4.4	177

#	Article	IF	CITATIONS
19	A Wnt1 regulated Frizzled- $1/\hat{l}^2$ -Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 2011, 6, 49.	10.8	179
20	Switching the Microglial Harmful Phenotype Promotes Lifelong Restoration of Subtantia Nigra Dopaminergic Neurons from Inflammatory Neurodegeneration in Aged Mice. Rejuvenation Research, 2011, 14, 411-424.	1.8	45
21	Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Journal of Neuroinflammation, 2010, 7, 83.	7.2	53
22	Glia as a Turning Point in the Therapeutic Strategy of Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 349-372.	1.4	59
23	Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?. Brain Research Reviews, 2008, 57, 431-443.	9.0	53
24	Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKC \hat{l}_{\pm} and the MAPK/ERK cascade. Journal of Lipid Research, 2007, 48, 782-793.	4.2	54
25	Activation of cytosolic phospholipase A2 and 15-lipoxygenase by oxidized low-density lipoproteins in cultured human lung fibroblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 522-532.	2.4	16
26	Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138, 869-878.	2.3	177
27	Hormones Are Key Actors in Gene X Environment Interactions Programming the Vulnerability to Parkinson's Disease: Glia as a Common Final Pathway. Annals of the New York Academy of Sciences, 2005, 1057, 296-318.	3.8	47
28	MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 172-186.	2.4	23
29	Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 135-150.	2.4	39
30	Glucocorticoid receptor–nitric oxide crosstalk and vulnerability to experimental parkinsonism: pivotal role for glia–neuron interactions. Brain Research Reviews, 2005, 48, 302-321.	9.0	56
31	Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. FASEB Journal, 2004, 18, 164-166.	0.5	72
32	Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 , 2470 - 2475 .	7.1	148
33	The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron–glial interactions. Domestic Animal Endocrinology, 2003, 25, 21-46.	1.6	11
34	Exposure to a Dysfunctional Glucocorticoid Receptor from Early Embryonic Life Programs the Resistance to Experimental Autoimmune Encephalomyelitis Via Nitric Oxide-Induced Immunosuppression. Journal of Immunology, 2002, 168, 5848-5859.	0.8	37
35	Stress, the immune system and vulnerability to degenerative disorders of the central nervous system in transgenic mice expressing glucocorticoid receptor antisense RNA. Brain Research Reviews, 2001, 37, 259-272.	9.0	52
36	Stress, glucocorticoids and the susceptibility to develop autoimmune disorders of the central nervous system. Neurological Sciences, 2001, 22, 159-162.	1.9	22

#	Article	IF	CITATIONS
37	Neuroendocrine–immune (NEI) circuitry from neuron–glial interactions to function: Focus on gender and HPA–HPG interactions on early programming of the NEI system. Immunology and Cell Biology, 2001, 79, 400-417.	2.3	37
38	Basic Fibroblast Growth Factor Priming Increases the Responsiveness of Immortalized Hypothalamic Luteinizing Hormone Releasing Hormone Neurones to Neurotrophic Factors. Journal of Neuroendocrinology, 2001, 12, 941-959.	2.6	23
39	Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture., 2000, 36, 233-253.		42
40	Immortalized hypothalamic luteinizing hormoneâ€releasing hormone (LHRH) neurons induce a functional switch in the growth factor responsiveness of astroglia: involvement of basic fibroblast growth factor. International Journal of Developmental Neuroscience, 2000, 18, 743-763.	1.6	18
41	Gender, Neuroendocrineâ€Immune Interactions and Neuronâ€Glial Plasticity: Role of Luteinizing Hormoneâ€Releasing Hormone (LHRH). Annals of the New York Academy of Sciences, 2000, 917, 678-709.	3.8	30
42	Multiple Biotin-Avidin Amplification for Multiple Immunostaining. Applied Immunohistochemistry & Molecular Morphology, 1999, 7, 73-80.	2.0	4
43	Luteinizing Hormoneâ€Releasing Hormone Is a Primary Signaling Molecule in the Neuroimmune Network. Annals of the New York Academy of Sciences, 1998, 840, 205-248.	3.8	33
44	Neurochemical, immunological and pharmacological assessments in a transgenic mouse model of the endocrine changes in depression. Aging Clinical and Experimental Research, 1997, 9, 26-27.	2.9	3
45	Circadian melatonin and young-to-old pineal grafting postpone aging and maintain juvenile conditions of reproductive functions in mice and rats. Experimental Gerontology, 1997, 32, 587-602.	2.8	33
46	Neuroendocrine-immune interactions in the control of reproduction. Pharmacological Research, 1992, 26, 114.	7.1	0