Liangdong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017715/publications.pdf Version: 2024-02-01

LIANCDONG 7HU

#	Article	IF	CITATIONS
1	Illuminating Excited-State Intramolecular Proton Transfer of a Fungi-Derived Red Pigment for Sustainable Functional Materials. Journal of Physical Chemistry C, 2022, 126, 459-477.	3.1	7
2	High-Symmetry Anthradithiophene Molecular Packing Motifs Promote Thermally Activated Singlet Fission. Journal of Physical Chemistry C, 2022, 126, 4433-4445.	3.1	15
3	The electrolyte comprising more robust water and superhalides transforms Znâ€metal anode reversiblyÂand dendriteâ€free. , 2021, 3, 339-348.		100
4	Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Physical Chemistry Chemical Physics, 2021, 23, 14636-14648.	2.8	15
5	Switching between Ultrafast Pathways Enables a Green-Red Emission Ratiometric Fluorescent-Protein-Based Ca2+ Biosensor. International Journal of Molecular Sciences, 2021, 22, 445.	4.1	11
6	Ultrafast Dynamics and Photoresponse of a Fungiâ€Derived Pigment Xylindein from Solution to Thin Films. Chemistry - A European Journal, 2021, 27, 5627-5631.	3.3	12
7	Transient electronic and vibrational signatures during reversible photoswitching of a cyanobacteriochrome photoreceptor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119379.	3.9	7
8	An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway. International Journal of Molecular Sciences, 2021, 22, 5252.	4.1	9
9	Ultrafast Triplet State Formation in a Methylated Fungi-Derived Pigment: Toward Rational Molecular Design for Sustainable Optoelectronics. Journal of Physical Chemistry C, 2021, 125, 17565-17572.	3.1	6
10	Excitation ratiometric chloride sensing in a standalone yellow fluorescent protein is powered by the interplay between proton transfer and conformational reorganization. Chemical Science, 2021, 12, 11382-11393.	7.4	17
11	Dual Illumination Enhances Transformation of an Engineered Greenâ€ŧoâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie, 2020, 132, 1661-1669.	2.0	2
12	Dual Illumination Enhances Transformation of an Engineered Greenâ€toâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie - International Edition, 2020, 59, 1644-1652.	13.8	21
13	Time-Resolved Changes in Dielectric Constant of Metal Halide Perovskites under Illumination. Journal of the American Chemical Society, 2020, 142, 19799-19803.	13.7	14
14	Reversible Insertion of Mg l Superhalides in Graphite as a Cathode for Aqueous Dualâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 19924-19928.	13.8	39
15	Dissecting Optical Response and Molecular Structure of Fluorescent Proteins With Non-canonical Chromophores. Frontiers in Molecular Biosciences, 2020, 7, 131.	3.5	10
16	Reversible Insertion of Mg l Superhalides in Graphite as a Cathode for Aqueous Dualâ€lon Batteries. Angewandte Chemie, 2020, 132, 20096-20100.	2.0	16
17	Photoinduced Charge Transfer and Bimetallic Bond Dissociation of a Bi–W Complex in Solution. Journal of Physical Chemistry Letters, 2020, 11, 7575-7582	4.6	6
18	Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution. Structural Dynamics, 2020, 7, 024901.	2.3	14

LIANGDONG ZHU

#	Article	lF	CITATIONS
19	Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores. Journal of Chemical Physics, 2020, 152, 021101.	3.0	14
20	A Dual Plating Battery with the lodine/[Znl _{<i>x</i>} (OH ₂) _{4â^²<i>x</i>}] ^{2â^²<i>x</i>} Cathode. Angewandte Chemie - International Edition, 2019, 58, 15910-15915.	13.8	86
21	A Dual Plating Battery with the lodine/[Znl _{<i>x</i>} (OH ₂) _{4â^'<i>x</i>}] ^{2â^'<i>x</i>} Cathode. Angewandte Chemie, 2019, 131, 16057-16062.	2.0	23
22	Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chemical Communications, 2019, 55, 2537-2540.	4.1	40
23	Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Physical Chemistry Chemical Physics, 2019, 21, 9728-9739.	2.8	38
24	Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. Journal of Physical Chemistry B, 2019, 123, 3804-3821.	2.6	32
25	Photoinduced charge flow inside an iron porphyrazine complex. Chemical Communications, 2019, 55, 13606-13609.	4.1	8
26	Correlated Molecular Structural Motions for Photoprotection after Deep-UV Irradiation. Journal of Physical Chemistry Letters, 2018, 9, 2311-2319.	4.6	18
27	Photoinduced proton transfer inside an engineered green fluorescent protein: a stepwise–concerted-hybrid reaction. Physical Chemistry Chemical Physics, 2018, 20, 12517-12526.	2.8	24
28	A ZnCl ₂ water-in-salt electrolyte for a reversible Zn metal anode. Chemical Communications, 2018, 54, 14097-14099.	4.1	491
29	Excited State Structural Evolution of a GFP Single-Site Mutant Tracked by Tunable Femtosecond-Stimulated Raman Spectroscopy. Molecules, 2018, 23, 2226.	3.8	38
30	Watching an Engineered Calcium Biosensor Glow: Altered Reaction Pathways before Emission. Journal of Physical Chemistry B, 2018, 122, 11986-11995.	2.6	11
31	Uncovering the Hidden Excited State toward Fluorescence of an Intracellular pH Indicator. Journal of Physical Chemistry Letters, 2018, 9, 4969-4975.	4.6	19
32	Tuning calcium biosensors with a single-site mutation: structural dynamics insights from femtosecond Raman spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7138-7146.	2.8	16
33	Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. Journal of Physical Chemistry Letters, 2017, 8, 5921-5928.	4.6	40
34	Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 5428-5441.	2.5	46
35	Monitoring Photochemical Reaction Pathways of Tungsten Hexacarbonyl in Solution from Femtoseconds to Minutes. Journal of Physical Chemistry B, 2016, 120, 13161-13168.	2.6	22
36	Panoramic portrait of primary molecular events preceding excited state proton transfer in water. Chemical Science, 2016, 7, 5484-5494.	7.4	97

LIANGDONG ZHU

#	Article	IF	CITATIONS
37	Initial hydrogen-bonding dynamics of photoexcited coumarin in solution with femtosecond stimulated Raman spectroscopy. Journal of Materials Chemistry C, 2016, 4, 2954-2963.	5.5	28
38	Ultrafast Structural Evolution and Chromophore Inhomogeneity inside a Green-Fluorescent-Protein-Based Ca ²⁺ Biosensor. Journal of Physical Chemistry Letters, 2016, 7, 1225-1230.	4.6	28
39	Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet. Applied Sciences (Switzerland), 2015, 5, 48-61.	2.5	19
40	Simultaneous solution-based generation and characterization of crystalline bismuth thin film by femtosecond laser spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	6
41	A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared. Applied Physics Letters, 2014, 105, .	3.3	70
42	Cascaded four-wave mixing for broadband tunable laser sideband generation. Optics Letters, 2013, 38, 1772.	3.3	26
43	Tunable sideband laser from cascaded four-wave mixing in thin glass for ultra-broadband femtosecond stimulated Raman spectroscopy. Applied Physics Letters, 2013, 103, .	3.3	19
44	Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 01Åmm beta-barium-borate crystal. Optics Letters, 2012, 37, 3783.	3.3	19