Michael F Jantsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017415/publications.pdf

Version: 2024-02-01

77 papers

6,305 citations

36 h-index 75 g-index

80 all docs 80 docs citations

80 times ranked

6096 citing authors

#	Article	IF	CITATIONS
1	Aâ€toâ€l RNA editing of Filamin A regulates cellular adhesion, migration and mechanical properties. FEBS Journal, 2022, 289, 4580-4601.	4.7	17
2	Transportin-1: A Nuclear Import Receptor with Moonlighting Functions. Frontiers in Molecular Biosciences, 2021, 8, 638149.	3.5	11
3	An I for an A: Dynamic Regulation of Adenosine Deamination-Mediated RNA Editing. Genes, 2021, 12, 1026.	2.4	12
4	Site-directed RNA editing: recent advances and open challenges. RNA Biology, 2021, 18, 41-50.	3.1	31
5	ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Research, 2020, 30, 1107-1118.	5.5	32
6	A-to-I RNA Editing Uncovers Hidden Signals of Adaptive Genome Evolution in Animals. Genome Biology and Evolution, 2020, 12, 345-357.	2.5	17
7	An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic Acids Research, 2020, 48, 3286-3303.	14.5	39
8	A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Research, 2019, 29, 1453-1463.	5.5	90
9	Of funding and finches. Genome Biology, 2019, 20, 176.	8.8	0
10	The Editor's I on Disease Development. Trends in Genetics, 2019, 35, 903-913.	6.7	42
11	Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Research, 2019, 47, 3-14.	14.5	128
12	Dynamic Interactions Between the Genome and an Endogenous Retrovirus: <i>Tirant</i> in <i>Drosophila simulans</i> Wild-Type Strains. G3: Genes, Genomes, Genetics, 2019, 9, 855-865.	1.8	5
13	"Mining the Epitranscriptome: Detection of RNA editing and RNA modifications― Methods, 2019, 156, 1-4.	3.8	4
14	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	3.1	18
15	Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells. RNA Biology, 2018, 15, 1-10.	3.1	17
16	Organ-wide profiling in mouse reveals high editing levels of Filamin B mRNA in the musculoskeletal system. RNA Biology, 2018, 15, 877-885.	3.1	13
17	<scp>RNA</scp> editing of Filamin A pre― <scp>mRNA</scp> regulates vascular contraction and diastolic blood pressure. EMBO Journal, 2018, 37, .	7.8	86
18	RNA in Disease and development. RNA Biology, 2017, 14, 457-459.	3.1	7

#	Article	IF	Citations
19	Understanding RNA modifications: the promises and technological bottlenecks of the $\hat{a}\in \hat{e}$ pitranscriptome $\hat{a}\in \mathbb{N}$. Open Biology, 2017, 7, 170077.	3.6	112
20	A to I editing in disease is not fake news. RNA Biology, 2017, 14, 1223-1231.	3.1	21
21	The Other Face of an Editor: ADAR1 Functions in Editingâ€Independent Ways. BioEssays, 2017, 39, 1700129.	2.5	17
22	<scp>RNA</scp> â€editing enzymes <scp>ADAR</scp> 1 and <scp>ADAR</scp> 2 coordinately regulate the editing and expression of <i>Ctn <scp>RNA</scp></i> . FEBS Letters, 2017, 591, 2890-2904.	2.8	23
23	ADAR2 regulates RNA stability by modifying access of decay-promoting RNA-binding proteins. Nucleic Acids Research, 2017, 45, gkw1304.	14.5	34
24	Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. Journal of Cell Biology, 2016, 213, 15-22.	5.2	115
25	Adenosine to Inosine editing frequency controlled by splicing efficiency. Nucleic Acids Research, 2016, 44, 6398-6408.	14.5	43
26	Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line. Genetics, 2016, 203, 733-748.	2.9	8
27	Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biology, 2016, 17, 220.	8.8	20
28	Paraspeckles modulate the intranuclear distribution of paraspeckle-associated Ctn RNA. Scientific Reports, 2016, 6, 34043.	3.3	21
29	The dynamic epitranscriptome: A to I editing modulates genetic information. Chromosoma, 2016, 125, 51-63.	2.2	35
30	Drosha protein levels are translationally regulated during Xenopus oocyte maturation. Molecular Biology of the Cell, 2014, 25, 2094-2104.	2.1	8
31	The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Reports, 2014, 9, 1482-1494.	6.4	508
32	ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Research, 2014, 42, 12155-12168.	14.5	42
33	A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1852-61.	7.1	70
34	Spatio-temporal profiling of Filamin A RNA-editing reveals ADAR preferences and high editing levels outside neuronal tissues. RNA Biology, 2013, 10, 1611-1617.	3.1	38
35	RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Research, 2013, 41, 2581-2593.	14.5	69
36	A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biology, 2013, 10, 192-204.	3.1	70

#	Article	IF	CITATIONS
37	Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Research, 2012, 22, 1468-1476.	5.5	80
38	Transcript Diversification in the Nervous System: A to I RNA Editing in CNS Function and Disease Development. Frontiers in Neuroscience, 2012, 6, 99.	2.8	67
39	A structural determinant required for RNA editing. Nucleic Acids Research, 2011, 39, 5669-5681.	14.5	35
40	Mutations in <i>Caenorhabditis elegans him-19</i> Show Meiotic Defects That Worsen with Age. Molecular Biology of the Cell, 2010, 21, 885-896.	2.1	24
41	Reaching complexity through RNA-editing. RNA Biology, 2010, 7, 191-191.	3.1	1
42	Proteome diversification by adenosine to inosine RNA-editing. RNA Biology, 2010, 7, 205-212.	3.1	66
43	RNA-Regulated Interaction of Transportin-1 and Exportin-5 with the Double-Stranded RNA-Binding Domain Regulates Nucleocytoplasmic Shuttling of ADAR1. Molecular and Cellular Biology, 2009, 29, 1487-1497.	2.3	111
44	Specificity of ADAR-mediated RNA editing in newly identified targets. Rna, 2008, 14, 1110-1118.	3.5	124
45	SINE RNA Induces Severe Developmental Defects in Arabidopsis thaliana and Interacts with HYL1 (DRB1), a Key Member of the DCL1 Complex. PLoS Genetics, 2008, 4, e1000096.	3.5	42
46	RNA Editing by Adenosine Deaminases that Act on RNA (ADARs). Nucleic Acids and Molecular Biology, 2008, , 51-84.	0.2	7
47	RNA Chaperones, RNA Annealers and RNA Helicases. RNA Biology, 2007, 4, 118-130.	3.1	279
48	Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic Acids Research, 2007, 35, 3723-3732.	14.5	87
49	An editor controlled by transcription. EMBO Reports, 2006, 7, 269-270.	4.5	2
50	RNA aptamers binding the double-stranded RNA-binding domain. Rna, 2006, 12, 1993-2004.	3.5	20
51	RNA editing level in the mouse is determined by the genomic repeat repertoire. Rna, 2006, 12, 1802-1809.	3.5	135
52	Chromosomal Storage of the RNA-editing Enzyme ADAR1 in <i>Xenopus</i> Oocytes. Molecular Biology of the Cell, 2005, 16, 3377-3386.	2.1	12
53	Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Research, 2005, 33, 1162-1168.	14.5	177
54	Targeted Gene Knockout Reveals a Role in Meiotic Recombination for ZHP-3, a Zip3-Related Protein in Caenorhabditis elegans. Molecular and Cellular Biology, 2004, 24, 7998-8006.	2.3	110

#	Article	IF	Citations
55	Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnology, 2004, 22, 1001-1005.	17.5	740
56	Oligomerization activity of a double-stranded RNA-binding domain. FEBS Letters, 2004, 574, 25-30.	2.8	36
57	The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Experimental Cell Research, 2003, 289, 245-255.	2.6	46
58	Distinct in vivo roles for double-stranded RNA-binding domains of the Xenopus RNA-editing enzyme ADAR1 in chromosomal targeting. Journal of Cell Biology, 2003, 161, 309-319.	5.2	21
59	Nucleocytoplasmic Distribution of Human RNA-editing Enzyme ADAR1 Is Modulated by Double-stranded RNA-binding Domains, a Leucine-rich Export Signal, and a Putative Dimerization Domain. Molecular Biology of the Cell, 2002, 13, 3822-3835.	2.1	110
60	New and old roles of the double-stranded RNA-binding domain. Journal of Structural Biology, 2002, 140, 147-153.	2.8	69
61	The Aurora B Kinase AIR-2 Regulates Kinetochores during Mitosis and Is Required for Separation of Homologous Chromosomes during Meiosis. Current Biology, 2002, 12, 798-812.	3.9	220
62	Brix from Xenopus laevis and Brx1p From Yeast Define a New Family of Proteins Involved in the Biogenesis of Large Ribosomal Subunits. Biological Chemistry, 2001, 382, 1637-47.	2.5	36
63	Characterisation of pericentromeric and sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma, 2001, 110, 203-213.	2.2	52
64	A <i>Caenorhabditis elegans</i> cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes and Development, 2001, 15, 1349-1360.	5.9	304
65	The Human But Not the <i>Xenopus </i> RNA-editing Enzyme ADAR1 Has an Atypical Nuclear Localization Signal and Displays the Characteristics of a Shuttling Protein. Molecular Biology of the Cell, 2001, 12, 1911-1924.	2.1	103
66	The RNA-editing Enzyme ADAR1 Is Localized to the Nascent Ribonucleoprotein Matrix on Xenopus Lampbrush Chromosomes but Specifically Associates with an Atypical Loop. Journal of Cell Biology, 1999, 144, 603-615.	5.2	33
67	Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma, 1998, 107, 247-254.	2.2	18
68	The double-stranded RNA-binding domains of Xenopus laevis ADAR1 exhibit different RNA-binding behaviors. FEBS Letters, 1998, 434, 121-126.	2.8	13
69	The double-stranded RNA-binding protein X1rbpa promotes RNA strand annealing. Nucleic Acids Research, 1998, 26, 4382-4388.	14.5	19
70	Xlrbpa, a Double-stranded RNA-binding Protein Associated with Ribosomes and Heterogeneous Nuclear RNPs. Journal of Cell Biology, 1997, 138, 239-253.	5.2	50
71	PARP is important for genomic stability but dispensable in apoptosis. Genes and Development, 1997, 11, 2347-2358.	5.9	511
72	Comparative Mutational Analysis of the Double-stranded RNA Binding Domains of Xenopus laevis RNA-binding Protein A. Journal of Biological Chemistry, 1996, 271, 28112-28119.	3.4	69

#	Article	IF	CITATIONS
73	Mechanisms of distamycin A/DAPI chromosome staining. Cytogenetic and Genome Research, 1993, 62, 19-25.	1.1	10
74	Assembly and localization of the U1-specific snRNP C protein in the amphibian oocyte Journal of Cell Biology, 1992, 119, 1037-1046.	5.2	35
75	Transcription on lampbrush chromosome loops in the absence of U2 snRNA Molecular Biology of the Cell, 1992, 3, 249-261.	2.1	15
76	A conserved double-stranded RNA-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10979-10983.	7.1	539
77	Meiotic chromosome behaviour reflects levels of sequence divergence inSus scrofa domestica satellite DNA. Chromosoma, 1990, 99, 330-335.	2.2	48