Chanhoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8017388/publications.pdf

Version: 2024-02-01

44 papers 2,220 citations

218677 26 h-index 254184 43 g-index

44 all docs 44 docs citations

times ranked

44

3572 citing authors

#	Article	IF	CITATIONS
1	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	14.6	230
2	Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3577-3588.	30.8	201
3	A High-Capacity and Long-Cycle-Life Lithium-lon Battery Anode Architecture: Silver Nanoparticle-Decorated SnO ₂ /NiO Nanotubes. ACS Nano, 2016, 10, 11317-11326.	14.6	177
4	High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices. ACS Nano, 2018, 12, 11838-11846.	14.6	158
5	Insight into the Critical Role of Surface Hydrophilicity for Dendrite-Free Zinc Metal Anodes. ACS Energy Letters, 2021, 6, 3078-3085.	17.4	121
6	Multifunctional Molecular Design as an Efficient Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18001-18007.	8.0	88
7	Formation of a Surficial Bifunctional Nanolayer on Nb ₂ O ₅ for Ultrastable Electrodes for Lithiumâ€ion Battery. Small, 2017, 13, 1603610.	10.0	74
8	Colorimetric Dye-Loaded Nanofiber Yarn: Eye-Readable and Weavable Gas Sensing Platform. ACS Nano, 2020, 14, 16907-16918.	14.6	74
9	MOF derived ZnCo ₂ O ₄ porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. Journal of Materials Chemistry A, 2017, 5, 22717-22725.	10.3	69
10	Mesoporous orthorhombic Nb2O5 nanofibers as pseudocapacitive electrodes with ultra-stable Li storage characteristics. Journal of Power Sources, 2017, 360, 434-442.	7.8	68
11	Dimensional Effects of MoS ₂ Nanoplates Embedded in Carbon Nanofibers for Bifunctional Li and Na Insertion and Conversion Reactions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26758-26768.	8.0	62
12	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	16.0	58
13	Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrO _{<i>x</i>} Nanoparticle Catalysts for Stable Oxygen Evolution. Chemistry of Materials, 2018, 30, 5941-5950.	6.7	57
14	Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-lon Batteries. Scientific Reports, 2017, 7, 45105.	3.3	49
15	Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers. Journal of Power Sources, 2018, 380, 174-184.	7.8	48
16	Fast, Scalable Synthesis of Micronized Ge ₃ N ₄ @C with a High Tap Density for Excellent Lithium Storage. Advanced Functional Materials, 2017, 27, 1605975.	14.9	47
17	Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20540-20549.	8.0	46
18	Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes. Journal of Materials Chemistry A, 2015, 3, 10687-10692.	10.3	43

#	Article	IF	Citations
19	Rational design of Sn-based multicomponent anodes for high performance lithium-ion batteries: SnO ₂ @TiO ₂ @reduced graphene oxide nanotubes. RSC Advances, 2016, 6, 2920-2925.	3.6	43
20	Stress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability. ACS Nano, 2018, 12, 8169-8176.	14.6	42
21	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	5.6	40
22	Porous SnO2-CuO nanotubes for highly reversible lithium storage. Journal of Power Sources, 2018, 373, 11-19.	7.8	34
23	Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries. Journal of Power Sources, 2018, 400, 485-492.	7.8	34
24	High-rate formation cycle of Co3O4 nanoparticle for superior electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2019, 295, 7-13.	5.2	32
25	Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39650-39656.	8.0	29
26	Ag-coated one-dimensional orthorhombic Nb2O5 fibers as high performance electrodes for lithium storage. Electrochimica Acta, 2018, 269, 388-396.	5.2	27
27	An angstrom-level d-spacing control of graphite oxide using organofillers for high-rate lithium storage. CheM, 2022, 8, 2393-2409.	11.7	27
28	Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO ₂ Nanoparticles in Liquid Electrolyte. ACS Omega, 2017, 2, 6329-6336.	3.5	26
29	Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 433, 133532.	12.7	25
30	Ultrastable Grapheneâ€Encapsulated 3 nm Nanoparticles by In Situ Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1805023.	21.0	24
31	<i>In Situ</i> High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO ₂ Nanotubes Under Lithiation. Microscopy and Microanalysis, 2017, 23, 1107-1115.	0.4	21
32	A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. Nanoscale, 2015, 7, 11286-11290.	5.6	19
33	Revisiting on the effect and role of TiO2 layer thickness on SnO2 for enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2017, 258, 1140-1148.	5.2	19
34	Gallium Nitride Nanoparticles Embedded in a Carbon Nanofiber Anode for Ultralong-Cycle-Life Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44263-44269.	8.0	19
35	Multi-functionalities of natural polysaccharide for enhancing electrochemical performance of macroporous Si anodes. RSC Advances, 2014, 4, 3070-3074.	3.6	16
36	Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO ₂ Nanospheres as Anodes for Lithium-ion Batteries. ACS Applied Energy Materials, 2019, 2, 2004-2012.	5.1	14

3

#	Article	IF	CITATION
37	Synergistic Interactions of Different Electroactive Components for Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2021, 13, 587-596.	8.0	13
38	Metal nanotrough embedded colorless polyimide films: transparent conducting electrodes with exceptional flexibility and high conductivity. Nanoscale, 2018, 10, 7927-7932.	5.6	12
39	Ultrasmall titanium oxide/titanium oxynitride composite nanoparticle-embedded carbon nanofiber mats as high-capacity and free-standing electrodes for lithium sulfur batteries. RSC Advances, 2017, 7, 44804-44808.	3.6	11
40	Stable and High-Capacity Si Electrodes with Free-Standing Architecture for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 208-217.	5.1	9
41	Template-assisted synthesis of single-atom catalysts supported on highly crystalline vanadium pentoxide for stable oxygen evolution. Chem Catalysis, 2022, 2, 1191-1210.	6.1	8
42	Scalable top-down synthesis of functional carbon nanosheets by aronia fruit powder for Li+ and K+ storage. Electrochimica Acta, 2021, 377, 138068.	5.2	4
43	In Situ TEM Observation on the Agglomeration of Nanoparticles in the Interface of SnO2. Microscopy and Microanalysis, 2017, 23, 2054-2055.	0.4	2
44	Real Time Observation of Initial Conversion Reaction of Co3O4 Nanoparticles Using Graphene Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1968-1969.	0.4	0