Anna Luisa Di Stefano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8016929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature Genetics, 2017, 49, 789-794.	21.4	259
2	Detection, Characterization, and Inhibition of FGFR–TACC Fusions in IDH Wild-type Glioma. Clinical Cancer Research, 2015, 21, 3307-3317.	7.0	230
3	Combined analysis of <i>TERT</i> , <i>EGFR</i> , and <i>IDH</i> status defines distinct prognostic glioblastoma classes. Neurology, 2014, 83, 1200-1206.	1.1	176
4	Chromosome 7p11.2 (EGFR) variation influences glioma risk. Human Molecular Genetics, 2011, 20, 2897-2904.	2.9	158
5	TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. British Journal of Cancer, 2014, 111, 2024-2032.	6.4	158
6	Risk factors for Coronavirus Disease 2019 (COVID-19) severity and mortality among solid cancer patients and impact of the disease on anticancer treatment: A French nationwide cohort study (GCO-002 CACOVID-19). European Journal of Cancer, 2020, 141, 62-81.	2.8	122
7	Genome-wide association study identifies multiple susceptibility loci for glioma. Nature Communications, 2015, 6, 8559.	12.8	112
8	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
9	The evolution of headache from childhood to adulthood: a review of the literature. Journal of Headache and Pain, 2014, 15, 15.	6.0	85
10	The 2016 World Health Organization classification of tumours of the central nervous system. Presse Medicale, 2018, 47, e187-e200.	1.9	75
11	<i>IDH</i> -wildtype lower-grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification. Neuro-Oncology, 2021, 23, 955-966.	1.2	73
12	Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy. Neuro-Oncology, 2018, 20, 907-916.	1.2	72
13	Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222. British Journal of Cancer, 2013, 108, 2178-2185.	6.4	51
14	Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy. Neuro-Oncology, 2019, 21, 765-774.	1.2	51
15	Deciphering the 8q24.21 association for glioma. Human Molecular Genetics, 2013, 22, 2293-2302.	2.9	50
16	Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro-Oncology, 2013, 15, 542-547.	1.2	48
17	Diffuse gliomas with <i>FGFR3â€TACC3</i> fusion have characteristic histopathological and molecular features. Brain Pathology, 2018, 28, 674-683	4.1	48
18	<i>FGFR1</i> actionable mutations, molecular specificities, and outcome of adult midline gliomas. Neurology, 2018, 90, e2086-e2094.	1.1	47

Anna Luisa Di Stefano

#	Article	IF	CITATIONS
19	Gender-based blood transcriptomes and interactomes in multiple sclerosis: Involvement of SP1 dependent gene transcription. Journal of Autoimmunity, 2012, 38, J144-J155.	6.5	43
20	Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: An overview of the literature. Cancer Treatment Reviews, 2014, 40, 951-959.	7.7	43
21	Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter and IDH mutation status are associated with specific genetic risk loci. Acta Neuropathologica, 2018, 135, 743-755.	7.7	42
22	Clinical, molecular, and radiomic profile of gliomas with FGFR3-TACC3 fusions. Neuro-Oncology, 2020, 22, 1614-1624.	1.2	41
23	Cerebrospinal BAFF and Epstein–Barr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. Journal of Neuroimmunology, 2011, 230, 160-163.	2.3	36
24	Predictive biomarkers in adult gliomas. Current Opinion in Oncology, 2013, 25, 689-694.	2.4	34
25	The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Review of Molecular Diagnostics, 2018, 18, 1041-1051.	3.1	34
26	TERT promoter mutations and rs2853669 polymorphism: prognostic impact and interactions with common alterations in glioblastomas. Journal of Neuro-Oncology, 2016, 126, 441-446.	2.9	30
27	VEGFA SNP rs2010963 is associated with vascular toxicity in recurrent glioblastomas and longer response to bevacizumab. Journal of Neuro-Oncology, 2015, 121, 499-504.	2.9	29
28	Strokeâ€like events after brain radiotherapy: a large series with longâ€ŧerm followâ€up. European Journal of Neurology, 2019, 26, 639-650.	3.3	29
29	Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan. PLoS ONE, 2013, 8, e74345.	2.5	28
30	Acute late-onset encephalopathy after radiotherapy: An unusual life-threatening complication. Neurology, 2013, 81, 1014-1017.	1.1	25
31	Acute late-onset encephalopathy after radiotherapy: An unusual life-threatening complication. Neurology, 2014, 82, 1102-1102.	1.1	19
32	Vemurafenib and cobimetinib overcome resistance to vemurafenib in <i>BRAF</i> -mutant ganglioglioma. Neurology, 2018, 91, 523-525.	1.1	19
33	The French glioblastoma biobank (FGB): a national clinicobiological database. Journal of Translational Medicine, 2019, 17, 133.	4.4	19
34	Herpes simplex encephalitis in glioma patients: a challenging diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 374-377.	1.9	17
35	Romiplostim for temozolomide-induced thrombocytopenia in glioblastoma. Neurology, 2019, 93, e1799-e1806.	1.1	17
36	Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan. PLoS ONE, 2014, 9, e90535.	2.5	17

#	Article	IF	CITATIONS
37	Sustained Tumor Control With MAPK Inhibition in <i>BRAF</i> V600–Mutant Adult Glial and Glioneuronal Tumors. Neurology, 2021, 97, e673-e683.	1.1	16
38	A genome-wide association study identifies susceptibility loci for primary central nervous system lymphoma at 6p25.3 and 3p22.1: a LOC Network study. Neuro-Oncology, 2019, 21, 1039-1048.	1.2	13
39	Leveraging Ethnic Group Incidence Variation to Investigate Genetic Susceptibility to Glioma: A Novel Candidate SNP Approach. Frontiers in Genetics, 2012, 3, 203.	2.3	12
40	Medical debulking with BRAF/MEK inhibitors in aggressive BRAF-mutant craniopharyngioma. Neuro-Oncology Advances, 2020, 2, vdaa141.	0.7	10
41	Meningeal Melanomatosis: A Challenge for Timely Diagnosis. BioMed Research International, 2015, 2015, 1-6.	1.9	9
42	An ANOCEF Genomic and Transcriptomic Microarray Study of the Response to Irinotecan and Bevacizumab in Recurrent Glioblastomas. BioMed Research International, 2014, 2014, 1-8.	1.9	8
43	Multimodal management of surgery- and radiation-refractory meningiomas: an analysis of the French national tumor board meeting on meningiomas cohort. Journal of Neuro-Oncology, 2021, 153, 55-64.	2.9	8
44	Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area. BioMed Research International, 2014, 2014, 1-5.	1.9	6
45	Current and future tools for determination and monitoring of isocitrate dehydrogenase status in gliomas. Current Opinion in Neurology, 2018, 31, 727-732.	3.6	6
46	Gliomas. BioMed Research International, 2014, 2014, 1-2.	1.9	3
47	CNS inflammatory disorder after concurrent radiotherapy-temozolomide and nivolumab in a glioblastoma patient. Neuro-Oncology, 2019, 21, 139-141.	1.2	3
48	Actionable targets involving FGF receptors in gliomas: Molecular specificities, spatial distribution, clinical outcome and radiological phenotype Journal of Clinical Oncology, 2018, 36, 2005-2005.	1.6	3
49	Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers, 2022, 14, 1124.	3.7	3
50	Central nervous system lymphoma occurring in a patient with neurofibromatosis type 1 (von) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 222
51	EGFR gene amplification in monocentric and multicentric glioblastoma. Journal of Neuro-Oncology, 2019, 145, 587-589.	2.9	1
52	Genome-driven medicine for patients with recurrent glioma enrolled in early phase trials. European Journal of Cancer, 2022, 163, 98-107.	2.8	1
53	Non-invasive molecular diagnosis in gliomas with advanced imaging. Clinical and Translational	2.1	1

⁵⁴ P07.15â€,Diagnostic value of 2-hydroxyglutarate detection by 1H MR spectroscopy in patients with glioma and correlations with tumor phenotype and tissue dosage. Neuro-Oncology, 2016, 18, iv37-iv37. 1.2 0

#	Article	IF	CITATIONS
55	Feasibility and benefit of molecularly-informed enrollment into early phase trials for patients with recurrent gliomas Journal of Clinical Oncology, 2018, 36, 2004-2004.	1.6	0
56	Automated Acquisition Planning for Magnetic Resonance Spectroscopy in Brain Cancer. Lecture Notes in Computer Science, 2020, 12267, 730-739.	1.3	0