Fabian Docagne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8016427/publications.pdf

Version: 2024-02-01

50 papers

3,598 citations

34 h-index 50 g-index

55 all docs

55 docs citations

55 times ranked 4820 citing authors

#	Article	IF	CITATIONS
1	Roles of the tissue-type plasminogen activator in immune response. Cellular Immunology, 2022, 371, 104451.	3.0	15
2	PAI-1 production by reactive astrocytes drives tissue dysfibrinolysis in multiple sclerosis models. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	1
3	Tissue plasminogen activator worsens experimental autoimmune encephalomyelitis by complementary actions on lymphoid and myeloid cell responses. Journal of Neuroinflammation, 2021, 18, 52.	7.2	5
4	Factor XII protects neurons from apoptosis by epidermal and hepatocyte growth factor receptorâ€dependent mechanisms. Journal of Thrombosis and Haemostasis, 2021, 19, 2235-2247.	3.8	2
5	Environmental enrichment alleviates the deleterious effects of stress in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732095980.	1.0	3
6	Autoimmune encephalitis mediated by B-cell response against N-methyl-d-aspartate receptor. Brain, 2020, 143, 2957-2972.	7.6	39
7	Ultrasensitive molecular imaging of intestinal mucosal inflammation using leukocyte-mimicking particles targeted to MAdCAM-1 in mice. Science Translational Medicine, 2020, 12, .	12.4	9
8	Nonionotropic Action of Endothelial NMDA Receptors on Blood–Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. Journal of Neuroscience, 2020, 40, 1778-1787.	3.6	36
9	HLA-Class II Artificial Antigen Presenting Cells in CD4+ T Cell-Based Immunotherapy. Frontiers in Immunology, 2019, 10, 1081.	4.8	56
10	Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1258-1265.	4.3	23
11	Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System. Theranostics, 2018, 8, 1195-1212.	10.0	55
12	Astrocytes regulate the balance between plasminogen activation and plasmin clearance via cell-surface actin. Cell Discovery, 2017, 3, 17001.	6.7	37
13	Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6116-6121.	7.1	43
14	Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination. Molecular Neurodegeneration, 2017, 12, 20.	10.8	12
15	ADAMTSâ€4 in oligodendrocytes contributes to myelination with an impact on motor function. Glia, 2017, 65, 1961-1975.	4.9	10
16	Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurology, The, 2016, 15, 1089-1102.	10.2	112
17	Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis. Brain, 2016, 139, 2406-2419.	7.6	40
18	The plasminogen activation system in neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 395-402.	3.8	52

#	Article	IF	CITATIONS
19	Understanding the Functions of Endogenous and Exogenous Tissue-Type Plasminogen Activator During Stroke. Stroke, 2015, 46, 314-320.	2.0	46
20	Letter by Macrez et al Regarding Article, "Preexisting Serum Autoantibodies Against the NMDAR Subunit NR1 Modulate Evolution of Lesion Size in Acute Ischemic Stroke― Stroke, 2015, 46, e177-e177.	2.0	0
21	Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System. Current Pharmaceutical Design, 2014, 20, 4707-4722.	1.9	69
22	Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chemical Reviews, 2013, 113, 1877-1903.	47.7	187
23	tPA in the injured central nervous system: different scenarios starring the same actor?. Neuropharmacology, 2012, 62, 749-756.	4.1	46
24	Glutamate Controls tPA Recycling by Astrocytes, Which in Turn Influences Glutamatergic Signals. Journal of Neuroscience, 2012, 32, 5186-5199.	3.6	67
25	Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage, 2012, 63, 760-770.	4.2	64
26	CD200â€CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia, 2012, 60, 1437-1450.	4.9	113
27	The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: Evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain, Behavior, and Immunity, 2011, 25, 736-749.	4.1	63
28	Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1receptors. Journal of Neuroinflammation, $2011, 8, 102$.	7.2	51
29	Tissue plasminogen activator prevents white matter damage following stroke. Journal of Experimental Medicine, 2011, 208, 1229-1242.	8.5	72
30	Pharmacological Activation/Inhibition of the Cannabinoid System Affects Alcohol Withdrawal-Induced Neuronal Hypersensitivity to Excitotoxic Insults. PLoS ONE, 2011, 6, e23690.	2.5	23
31	An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiology of Disease, 2010, 37, 166-176.	4.4	82
32	Anandamide enhances ILâ€10 production in activated microglia by targeting CB ₂ receptors: Roles of ERK1/2, JNK, and NFâ€₽B. Glia, 2010, 58, 135-147.	4.9	149
33	The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiology of Disease, 2009, 33, 57-71.	4.4	107
34	A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochemical Pharmacology, 2009, 77, 86-100.	4.4	85
35	Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia, 2009, 57, 1802-1814.	4.9	52
36	Chapter 9 The Endocannabinoid Anandamide. Vitamins and Hormones, 2009, 81, 207-230.	1.7	19

#	Article	IF	CITATIONS
37	Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. European Journal of Neuroscience, 2008, 28, 633-641.	2.6	103
38	Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opinion on Therapeutic Targets, 2008, 12, 185-195.	3.4	37
39	Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E2. Biochemical Journal, 2008, 409, 761-770.	3.7	40
40	Cannabinoid CB ₁ and CB ₂ Receptors and Fatty Acid Amide Hydrolase Are Specific Markers of Plaque Cell Subtypes in Human Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 2396-2402.	3.6	243
41	Cannabinoid System and Neuroinflammation: Implications for Multiple Sclerosis. NeuroImmunoModulation, 2007, 14, 182-187.	1.8	20
42	Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Molecular and Cellular Neurosciences, 2007, 34, 551-561.	2.2	103
43	The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler's virus infection. Biochemical Pharmacology, 2006, 72, 869-880.	4.4	51
44	Differential regulation of type $\hat{s} \in \mathcal{I}$ and type $\hat{s} \in \mathcal{I}$ interleukin-1 receptors in focal brain inflammation. European Journal of Neuroscience, 2005, 21, 1205-1214.	2.6	40
45	Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. British Journal of Pharmacology, 2005, 145, 441-448.	5 . 4	114
46	The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation. Mini-Reviews in Medicinal Chemistry, 2005, 5, 671-675.	2.4	33
47	Smad3-Dependent Induction of Plasminogen Activator Inhibitor-1 in Astrocytes Mediates Neuroprotective Activity of Transforming Growth Factor- \hat{l}^21 against NMDA-Induced Necrosis. Molecular and Cellular Neurosciences, 2002, 21, 634-644.	2.2	77
48	The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Medicine, 2001, 7, 59-64.	30.7	678
49	Transforming growth factorâ€Î²l as a regulator of the serpins/tâ€PA axis in cerebral ischemia. FASEB Journal, 1999, 13, 1315-1324.	0.5	96
50	Upâ \in regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor \hat{l}^21 . FASEB Journal, 1998, 12, 1683-1691.	0.5	115