Terence R Strick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8016052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of Ku and bacterial non-homologous end-joining characterized using single DNA molecule analysis. Nucleic Acids Research, 2021, 49, 2629-2641.	14.5	22
2	Dynamics and Binding Strength of the Spike Protein of Sars-Cov-2 Probed by High-Speed Atomic Force Microscopy. Biophysical Journal, 2021, 120, 3a.	0.5	2
3	Cotranscriptional R-loop formation by Mfd involves topological partitioning of DNA. Proceedings of the United States of America, 2021, 118, .	7.1	25
4	Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Research, 2020, 48, 10953-10972.	14.5	43
5	Identifying Evolutionarily Conserved Features of NHEJ from Prokaryotes to Eukaryotes using Single-Molecule Approaches. Biophysical Journal, 2020, 118, 374a.	0.5	0
6	Direct observation of helicase–topoisomerase coupling within reverse gyrase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10856-10864.	7.1	11
7	The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Research, 2019, 47, 11667-11680.	14.5	26
8	A modular DNA scaffold to study protein–protein interactions at single-molecule resolution. Nature Nanotechnology, 2019, 14, 988-993.	31.5	41
9	Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes. Microbial Cell, 2019, 6, 65-101.	3.2	10
10	Transcription-Coupled Repair: From Cells to Single Molecules and Back Again. Journal of Molecular Biology, 2019, 431, 4093-4102.	4.2	20
11	Single-molecule characterization of extrinsic transcription termination by Sen1 helicase. Nature Communications, 2019, 10, 1545.	12.8	13
12	Molecular scaffolds: when DNA becomes the hardware for single-molecule investigations. Current Opinion in Chemical Biology, 2019, 53, 192-203.	6.1	7
13	A measure of force. Current Opinion in Chemical Biology, 2019, 53, A4-A6.	6.1	4
14	TopA, the Sulfolobus solfataricus topoisomerase III, is a decatenase. Nucleic Acids Research, 2018, 46, 861-872.	14.5	39
15	Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nature Structural and Molecular Biology, 2018, 25, 482-487.	8.2	79
16	Transcription-Coupled Repair and Complex Biology. Journal of Molecular Biology, 2018, 430, 4496-4512.	4.2	14
17	Understanding bias in DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2791-2793.	7.1	5
18	Preparation of DNA Substrates and Functionalized Glass Surfaces for Correlative Nanomanipulation and Colocalization (NanoCOSM) of Single Molecules. Methods in Enzymology, 2017, 582, 275-296.	1.0	9

TERENCE R STRICK

#	Article	IF	CITATIONS
19	C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme–DNA complex and confer high enzyme processivity. Nucleic Acids Research, 2017, 45, 11908-11924.	14.5	30
20	The mechanism of variability in transcription start site selection. ELife, 2017, 6, .	6.0	23
21	Simple calibration of TIR field depth using the supercoiling response of DNA. Methods, 2016, 105, 56-61.	3.8	4
22	Backtracked and paused transcription initiation intermediate of <i>Escherichia coli</i> RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6562-E6571.	7.1	78
23	Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature, 2016, 536, 234-237.	27.8	78
24	Unlocking the secrets of fork arrest. Nature Chemical Biology, 2015, 11, 550-551.	8.0	0
25	A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nature Structural and Molecular Biology, 2015, 22, 452-457.	8.2	69
26	A highly processive topoisomerase I: studies at the single-molecule level. Nucleic Acids Research, 2014, 42, 7935-7946.	14.5	31
27	Stopped in its tracks: The RNA polymerase molecular motor as a robust sensor of DNA damage. DNA Repair, 2014, 20, 49-57.	2.8	7
28	Watching single molecules in action. ELife, 2014, 3, e02061.	6.0	0
29	Magnetic trapping of single molecules: principles, developments, and applications. , 2013, , .		0
30	Mfd as a central partner of transcription coupled repair. Transcription, 2013, 4, 109-113.	3.1	3
31	Topological characterization of the DnaA–oriC complex using single-molecule nanomanipuation. Nucleic Acids Research, 2012, 40, 7375-7383.	14.5	27
32	Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature, 2012, 490, 431-434.	27.8	83
33	Eeny meeny miny moe, catch a transcript by the toe, or how to enumerate eukaryotic transcripts: Figure 1 Genes and Development, 2012, 26, 1643-1647.	5.9	Ο
34	Single-Molecule Studies Using Magnetic Traps. Cold Spring Harbor Protocols, 2012, 2012, pdb.top067488.	0.3	39
35	Magnetic Trap Construction: Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067496.	0.3	26
36	Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation. Nucleic Acids Research, 2011, 39, 4275-4283.	14.5	25

TERENCE R STRICK

#	Article	IF	CITATIONS
37	Biology, one molecule at a time. Trends in Biochemical Sciences, 2009, 34, 234-243.	7.5	138
38	Optical investigations of the RNA polymerase molecular motor. Journal of Biophotonics, 2008, 1, 269-279.	2.3	3
39	Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching. Science, 2006, 314, 1139-1143.	12.6	346
40	FtsK: a groovy helicase. Nature Structural and Molecular Biology, 2006, 13, 948-950.	8.2	9
41	Chromatin Remodeling: RSC Motors along the DNA. Current Biology, 2006, 16, R287-R289.	3.9	3
42	Single-molecule DNA nanomanipulation: Improved resolution through use of shorter DNA fragments. Nature Methods, 2005, 2, 127-138.	19.0	69
43	Tracking Topoisomerase Activity at the Single-Molecule Level. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 201-219.	18.3	98
44	Topoisomerase IV Bends and Overtwists DNA upon Binding. Biophysical Journal, 2005, 89, 384-392.	0.5	31
45	Promoter unwinding and promoter clearance by RNA polymerase: Detection by single-molecule DNA nanomanipulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4776-4780.	7.1	157
46	Real-Time Detection of Single-Molecule DNA Compaction by Condensin I. Current Biology, 2004, 14, 874-880.	3.9	140
47	Single-Molecule DNA Nanomanipulation: Detection of Promoter-Unwinding Events by RNA Polymerase. Methods in Enzymology, 2003, 370, 577-598.	1.0	23
48	Stretching of macromolecules and proteins. Reports on Progress in Physics, 2003, 66, 1-45.	20.1	230
49	Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. Comptes Rendus Physique, 2002, 3, 595-618.	0.9	14
50	The Manipulation of Single Biomolecules. Physics Today, 2001, 54, 46-51.	0.3	81
51	Twisting and stretching single DNA molecules. , 2001, , 115-140.		1
52	Study of DNA Motors by Single Molecule Micromanipulation. Single Molecules, 2000, 1, 145-151.	0.9	7
53	Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature, 2000, 404, 901-904.	27.8	325
54	Twisting and stretching single DNA molecules. Progress in Biophysics and Molecular Biology, 2000, 74, 115-140.	2.9	317

TERENCE R STRICK

#	Article	IF	CITATIONS
55	Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes and Development, 2000, 14, 2881-2892.	5.9	175
56	Stress-Induced Structural Transitions in DNA and Proteins. Annual Review of Biophysics and Biomolecular Structure, 2000, 29, 523-543.	18.3	99
57	Phase coexistence in a single DNA molecule. Physica A: Statistical Mechanics and Its Applications, 1999, 263, 392-404.	2.6	56
58	Micro-mechanical measurement of the torsional modulus of DNA. Genetica, 1999, 106, 57-62.	1.1	60
59	Le jokari moléculaire. Biofutur, 1999, 1999, 26-27.	0.0	1
60	Micro-Mechanical Measurement of the Torsional Modulus of DNA. , 1999, , 87-96.		1
61	Physical Approaches to the Study of DNA. Journal of Statistical Physics, 1998, 93, 647-672.	1.2	21
62	Behavior of Supercoiled DNA. Biophysical Journal, 1998, 74, 2016-2028.	0.5	466
63	Homologous pairing in stretched supercoiled DNA. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10579-10583.	7.1	150
64	The Elasticity of a Single Supercoiled DNA Molecule. Science, 1996, 271, 1835-1837.	12.6	1,161