Veronique E Miron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8012964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience, 2013, 16, 1211-1218.	14.8	1,357
2	Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain, 2008, 131, 1749-1758.	7.6	705
3	Fingolimod (FTY720) Enhances Remyelination Following Demyelination of Organotypic Cerebellar Slices. American Journal of Pathology, 2010, 176, 2682-2694.	3.8	254
4	FTY720 modulates human oligodendrocyte progenitor process extension and survival. Annals of Neurology, 2008, 63, 61-71.	5.3	244
5	The pro-remyelination properties of microglia in the central nervous system. Nature Reviews Neurology, 2019, 15, 447-458.	10.1	230
6	Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nature Neuroscience, 2019, 22, 1046-1052.	14.8	215
7	Cells of the oligodendroglial lineage, myelination, and remyelination. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 184-193.	3.8	211
8	Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nature Communications, 2019, 10, 3215.	12.8	191
9	Macrophages and CNS remyelination. Journal of Neurochemistry, 2014, 130, 165-171.	3.9	160
10	Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia, 2007, 55, 1656-1667.	4.9	158
11	Central nervous system-directed effects of FTY720 (fingolimod). Journal of the Neurological Sciences, 2008, 274, 13-17.	0.6	158
12	Statin Therapy Inhibits Remyelination in the Central Nervous System. American Journal of Pathology, 2009, 174, 1880-1890.	3.8	118
13	Neurobiological effects of sphingosine 1â€phosphate receptor modulation in the cuprizone model. FASEB Journal, 2011, 25, 1509-1518.	0.5	99
14	Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	7.6	97
15	The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology, 2011, 76, S9-14.	1.1	92
16	Cyclical and Dose-Dependent Responses of Adult Human Mature Oligodendrocytes to Fingolimod. American Journal of Pathology, 2008, 173, 1143-1152.	3.8	91
17	Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. Journal of Leukocyte Biology, 2017, 101, 1103-1108.	3.3	91
18	Simvastatin regulates oligodendroglial process dynamics and survival. Glia, 2007, 55, 130-143.	4.9	84

Veronique E Miron

#	Article	IF	CITATIONS
19	Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain, 2013, 136, 1035-1047.	7.6	74
20	Oligodendrocyte Progenitor Cell Susceptibility to Injury in Multiple Sclerosis. American Journal of Pathology, 2013, 183, 516-525.	3.8	61
21	Microglia: origins, homeostasis, and roles in myelin repair. Current Opinion in Neurobiology, 2017, 47, 113-120.	4.2	60
22	Astrocytes in myelination and remyelination. Neuroscience Letters, 2019, 713, 134532.	2.1	56
23	Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathologica, 2018, 135, 887-906.	7.7	48
24	White matter microglia heterogeneity in the CNS. Acta Neuropathologica, 2022, 143, 125-141.	7.7	48
25	DNA Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and Cognitive Aging. Neurology, 2021, 97, e2340-e2352.	1.1	44
26	Response of Human Oligodendrocyte Progenitors to Growth Factors and Axon Signals. Journal of Neuropathology and Experimental Neurology, 2010, 69, 930-944.	1.7	43
27	Unconjugated Bilirubin Restricts Oligodendrocyte Differentiation and Axonal Myelination. Molecular Neurobiology, 2013, 47, 632-644.	4.0	35
28	Investigating Microglia in Health and Disease: Challenges and Opportunities. Trends in Immunology, 2020, 41, 785-793.	6.8	35
29	Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cellular and Molecular Life Sciences, 2018, 75, 2843-2856.	5.4	34
30	Microglia in developing white matter and perinatal brain injury. Neuroscience Letters, 2020, 714, 134539.	2.1	25
31	Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination. Frontiers in Cell and Developmental Biology, 2016, 4, 60.	3.7	23
32	Retinoic acid-loaded NFL-lipid nanocapsules promote oligodendrogenesis in focal white matter lesion. Biomaterials, 2020, 230, 119653.	11.4	22
33	Central nervous system effects of current and emerging multiple sclerosis-directed immuno-therapies. Clinical Neurology and Neurosurgery, 2008, 110, 951-957.	1.4	20
34	The Cerebrospinal Fluid Inflammatory Response to Preterm Birth. Frontiers in Physiology, 2018, 9, 1299.	2.8	19
35	Distinct origins, gene expression and function of microglia and monocyte-derived macrophages in CNS myelin injury and regeneration. Clinical Immunology, 2018, 189, 57-62.	3.2	17
36	Microglial inflammasome activation drives developmental white matter injury. Glia, 2021, 69, 1268-1280.	4.9	15

Veronique E Miron

#	Article	IF	CITATIONS
37	Beyond immunomodulation: The regenerative role for regulatory T cells in central nervous system remyelination. Journal of Cell Communication and Signaling, 2017, 11, 191-192.	3.4	10
38	Microglia as therapeutic targets for central nervous system remyelination. Current Opinion in Pharmacology, 2022, 63, 102188.	3.5	10
39	Dissecting the damaging versus regenerative roles of CNS macrophages: implications for the use of immunomodulatory therapeutics. Regenerative Medicine, 2013, 8, 673-676.	1.7	6
40	Impact of anti-PDGFRα antibody surface functionalization on LNC uptake by oligodendrocyte progenitor cells. International Journal of Pharmaceutics, 2022, 618, 121623.	5.2	6
41	Monocytes in central nervous system remyelination. Glia, 2022, 70, 797-807.	4.9	5
42	Replenishing our mind orchards: Enhancing myelin renewal to rescue cognition in Alzheimer's disease. Neuron, 2021, 109, 2204-2206.	8.1	4
43	Isolation and Culture of Primary Human CNS Neural Cells. Springer Protocols, 2009, , 87-104.	0.3	3
44	Assessment of Sphingosine-1-Phosphate Receptor Expression and Associated Intracellular Signaling Cascades in Primary Cells of the Human Central Nervous System. Methods in Molecular Biology, 2012, 874, 141-154.	0.9	2
45	Effects of Current Medical Therapies on Reparative and Neuroprotective Functions in Multiple Sclerosis. , 2013, , 203-231.		0
46	Isolation and Preparation of Cells from Focal Remyelinating Central Nervous System Lesions for RNA Sequencing. Methods in Molecular Biology, 2019, 1936, 23-36.	0.9	0
47	Special Issue "Microglia Heterogeneity and Its Relevance for Translational Research― International Journal of Molecular Sciences, 2021, 22, 12350.	4.1	Ο