Paolo Puccetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/801254/publications.pdf

Version: 2024-02-01

264 papers

24,531 citations

78 h-index

7096

148

g-index

272 all docs

272 docs citations

times ranked

272

19335 citing authors

#	Article	IF	CITATIONS
1	T cell fat catabolism: A novel target for kynurenine?. EBioMedicine, 2022, 75, 103779.	6.1	2
2	Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14.	14.3	41
3	Novel mutations in the <i>WFS1</i> gene are associated with Wolfram syndrome and systemic inflammation. Human Molecular Genetics, 2021, 30, 265-276.	2.9	18
4	Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 4644.	4.1	25
5	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	6.4	16
6	Reply to Han et al.: On track for an IDO1-based personalized therapy in autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24037-24038.	7.1	2
7	Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discovery, 2020, 6, 49.	4.7	19
8	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58
9	HOPS/TMUB1 retains p53 in the cytoplasm and sustains p53â€dependent mitochondrial apoptosis. EMBO Reports, 2020, 21, e48073.	4.5	23
10	Pharmacologic Induction of Endotoxin Tolerance in Dendritic Cells by L-Kynurenine. Frontiers in Immunology, 2020, $11,292$.	4.8	26
11	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	4.5	24
12	Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opinion on Drug Discovery, 2019, 14, 1199-1212.	5.0	25
13	Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease. Frontiers in Immunology, 2019, 10, 1565.	4.8	55
14	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	4.8	47
15	<scp>IL</scp> â€35lg–expressing dendritic cells induce tolerance via Arginase 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3757-3761.	3.6	9
16	Targeting indoleamine-2,3-dioxygenase in cancer: Scientific rationale and clinical evidence. , 2019, 196, 105-116.		88
17	Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem, 2018, 13, 270-279.	3.2	20
18	Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes. Trends in Molecular Medicine, 2018, 24, 931-941.	6.7	34

#	Article	IF	Citations
19	Reply to †F508del-CFTR is not corrected by thymosin α1'. Nature Medicine, 2018, 24, 891-893.	30.7	2
20	S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid–derived stem cells. European Journal of Pharmacology, 2018, 833, 173-182.	3.5	14
21	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5. 0	51
22	Prospective Study of the Immunological Mechanisms of Immune Tolerance Induction in Severe Haemophilia a Patients with Inhibitors: Preliminary Analysis of a Multi-Center Longitudinal Study. Blood, 2018, 132, 3781-3781.	1.4	0
23	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	14.3	241
24	Thymosin $\hat{l}\pm 1$ represents a potential potent single-molecule-based therapy for cystic fibrosis. Nature Medicine, 2017, 23, 590-600.	30.7	91
25	Interaction of 7-Alkoxycoumarins with the Aryl Hydrocarbon Receptor. Journal of Natural Products, 2017, 80, 1939-1943.	3.0	10
26	Amino-acid sensing and degrading pathways in immune regulation. Cytokine and Growth Factor Reviews, 2017, 35, 37-45.	7.2	79
27	Distinct roles of immunoreceptor tyrosineâ€based motifs in immunosuppressive indoleamine 2,3â€dioxygenase 1. Journal of Cellular and Molecular Medicine, 2017, 21, 165-176.	3.6	51
28	The Proteasome Inhibitor Bortezomib Controls Indoleamine 2,3-Dioxygenase 1 Breakdown and Restores Immune Regulation in Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 428.	4.8	28
29	Disease Tolerance Mediated by Phosphorylated Indoleamine-2,3 Dioxygenase Confers Resistance to a Primary Fungal Pathogen. Frontiers in Immunology, 2017, 8, 1522.	4.8	9
30	CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	7
31	Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology, 2016, 102, 59-71.	4.1	29
32	Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Experimental Neurology, 2016, 275, 116-125.	4.1	81
33	Installing FVIII-Specific Tolerance in Hemophilia Via Engagement of the Aryl Hydrocarbon Receptor By Tryptophan Derivatives. Blood, 2016, 128, 2563-2563.	1.4	0
34	Stem cells from human amniotic fluid exert immunoregulatory function ⟨i⟩via⟨ i⟩ secreted indoleamine 2,3â€dioxygenase1. Journal of Cellular and Molecular Medicine, 2015, 19, 1593-1605.	3.6	45
35	Accumulation of an Endogenous Tryptophan-Derived Metabolite in Colorectal and Breast Cancers. PLoS ONE, 2015, 10, e0122046.	2.5	76
36	The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals. Frontiers in Immunology, 2015, 6, 58.	4.8	53

#	Article	IF	CITATIONS
37	Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. Molecular BioSystems, 2015, 11, 1622-1632.	2.9	7
38	CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Reports, 2015, 12, 1789-1801.	6.4	89
39	LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology, 2015, 220, 315-321.	1.9	30
40	The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Seminars in Immunopathology, 2015, 37, 163-171.	6.1	43
41	IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Journal of Clinical Investigation, 2015, 125, 3766-3781.	8.2	39
42	NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle, 2014, 13, 1902-1911.	2.6	27
43	On the Non-Redundant Roles ofââ,¬â€°TDO2 and IDO1. Frontiers in Immunology, 2014, 5, 522.	4.8	3
44	Forced IDO 1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 2082-2091.	3.6	47
45	Ligand Binding and Functional Selectivity of <scp>l</scp> -Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling, 2014, 54, 3373-3383.	5.4	42
46	AhR: Far more than an environmental sensor. Cell Cycle, 2014, 13, 2645-2646.	2.6	14
47	Romani & Puccetti reply. Nature, 2014, 514, E18-E18.	27.8	1
48	Indoleamine 2,3-Dioxygenase 1 (IDO1) Is Up-Regulated in Thyroid Carcinoma and Drives the Development of an Immunosuppressant Tumor Microenvironment. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E832-E840.	3.6	73
49	Microbiota control of a tryptophan–AhR pathway in disease tolerance to fungi. European Journal of Immunology, 2014, 44, 3192-3200.	2.9	78
50	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
51	TLRs and tryptophan metabolism at the crossroad of immunoregulatory pathways. Immunometabolism, $2014,1,.$	6.0	3
52	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	12.8	102
53	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	14.3	1,663
54	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	5.6	86

#	Article	IF	Citations
55	IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis. PLoS Pathogens, 2013, 9, e1003486.	4.7	102
56	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.8	22
57	Clotting factor concentrate switching and inhibitor development in hemophilia A. Blood, 2012, 120, 720-727.	1.4	45
58	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	12.8	84
59	Indoleamine 2,3â€dioxygenase: From catalyst to signaling function. European Journal of Immunology, 2012, 42, 1932-1937.	2.9	160
60	Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 2011, 12, 870-878.	14.5	577
61	Indoleamine 2,3-Dioxygenase and Peripheral Tolerance to Exogenous Factor VIII: A Multi-Centre Pilot Study. Blood, 2011, 118, 26-26.	1.4	1
62	Xenograft of Microencapsulated Sertoli Cells Reverses T1DM in NOD Mice by Inducing Neogenesis of Beta-Cells. Transplantation, 2010, 90, 1352-1357.	1.0	16
63	Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 ⁺ Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International Journal of Tryptophan Research, 2010, 3, IJTR.S3971.	2.3	23
64	Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nature Medicine, 2010, 16, 897-902.	30.7	138
65	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.8	0
66	XENOGRAFT OF MICROENCAPSULATED SERTOLI CELLS ALONE CURES NOD MICE WITH SPONTANEOUS AUTOIMMUNE DIABETES. Transplantation, 2010, 90, 329.	1.0	0
67	IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology, 2010, 3, 361-373.	6.0	247
68	Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 2010, 59, 595-604.	12.1	313
69	Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to <i>Aspergillus</i> . Medical Mycology, 2009, 47, S154-S161.	0.7	21
70	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.8	101
71	Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunology, 2009, 2, 362-374.	6.0	122
72	Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. Journal of Experimental Medicine, 2009, 206, 2511-2526.	8.5	84

#	Article	IF	Citations
73	Chronic granulomatous disease. Cellular and Molecular Life Sciences, 2009, 66, 553-558.	5.4	21
74	Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes and Infection, 2009, 11, 133-141.	1.9	104
75	TGF- \hat{l}^2 and kynurenines as the key to infectious tolerance. Trends in Molecular Medicine, 2009, 15, 41-49.	6.7	121
76	Innovative extraction procedure for obtaining high pure lycopene from tomato. European Food Research and Technology, 2008, 226, 327-335.	3.3	38
77	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	27.8	492
78	Generation of T cell regulatory activity by plasmacytoid dendritic cells and tryptophan catabolism. Blood Cells, Molecules, and Diseases, 2008, 40, 101-105.	1.4	57
79	Pathogenic Inflammation in Fungal Infections: the Contribution of the Th17 Pathway. International Journal of Infectious Diseases, 2008, 12, S1.	3.3	0
80	Immune Regulation and Tolerance to Fungi in the Lungs and Skin. Chemical Immunology and Allergy, 2008, 94, 124-137.	1.7	20
81	Cutting Edge: Autocrine TGF- \hat{l}^2 Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells. Journal of Immunology, 2008, 181, 5194-5198.	0.8	154
82	IL-23 and Th17 Cells Enhance Th2-Cell–mediated Eosinophilic Airway Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1023-1032.	5.6	369
83	IL-17 and Therapeutic Kynurenines in Pathogenic Inflammation to Fungi. Journal of Immunology, 2008, 180, 5157-5162.	0.8	105
84	Lack of Toll IL-1R8 Exacerbates Th17 Cell Responses in Fungal Infection. Journal of Immunology, 2008, 180, 4022-4031.	0.8	102
85	SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20828-20833.	7.1	187
86	CTLA-4-immunoglobulin and indoleamine 2,3-dioxygenase in dominant tolerance., 2008, , 87-106.		1
87	Functional yet Balanced Reactivity to <i>Candida albicans</i> Requires TRIF, MyD88, and IDO-Dependent Inhibition of <i>Rorc</i> Journal of Immunology, 2007, 179, 5999-6008.	0.8	159
88	Tryptophan Catabolism in IDO+ Plasmacytoid Dendritic Cells. Current Drug Metabolism, 2007, 8, 209-216.	1.2	59
89	Immunosuppression Via Tryptophan Catabolism: The Role of Kynurenine Pathway Enzymes. Transplantation, 2007, 84, S17-S20.	1.0	82
90	Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017.	4.4	52

#	Article	IF	CITATIONS
91	On watching the watchers: IDO and type I/II IFN. European Journal of Immunology, 2007, 37, 876-879.	2.9	68
92	ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706.	2.9	490
93	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
94	IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nature Reviews Immunology, 2007, 7, 817-823.	22.7	423
95	Thymosin $\hat{A}1$: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New York Academy of Sciences, 2007, 1112, 326-338.	3.8	87
96	Receptors and Pathways in Innate Antifungal Immunity. Advances in Experimental Medicine and Biology, 2007, 590, 209-221.	1.6	20
97	IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine, 2006, 34, 161-169.	3.2	22
98	Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends in Microbiology, 2006, 14, 183-189.	7.7	124
99	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	1.2	97
100	Thymosin $\hat{l}\pm 1$ activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	1.4	172
101	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	1.4	183
102	Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism. European Journal of Immunology, 2006, 36, 8-11.	2.9	53
103	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.8	943
104	Kynurenine Pathway Enzymes in Dendritic Cells Initiate Tolerogenesis in the Absence of Functional IDO. Journal of Immunology, 2006, 177, 130-137.	0.8	164
105	Immunity and Tolerance to <i>Aspergillus</i> Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. Journal of Immunology, 2006, 176, 1712-1723.	0.8	187
106	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	2.9	38
107	CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-lg. Microbes and Infection, 2005, 7, 1040-1048.	1.9	24
108	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. International Immunology, 2005, 17, 1429-1438.	4.0	74

#	Article	IF	Citations
109	A Crucial Role for Tryptophan Catabolism at the Host/ <i>Candida albicans</i> Interface. Journal of Immunology, 2005, 174, 2910-2918.	0.8	129
110	Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-lg from Immune Adjuvant to Suppressant. Journal of Immunology, 2005, 174, 6582-6586.	0.8	88
111	CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2004, 200, 1051-1062.	8.5	125
112	The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. International Immunology, 2004, 16, 149-161.	4.0	86
113	Murine Plasmacytoid Dendritic Cells Initiate the Immunosuppressive Pathway of Tryptophan Catabolism in Response to CD200 Receptor Engagement. Journal of Immunology, 2004, 173, 3748-3754.	0.8	203
114	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	14.5	262
115	Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 2003, 4, 1206-1212.	14.5	1,172
116	Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 2003, 6, 338-343.	5.1	105
117	Tolerance, DCs and tryptophan: much ado about IDO. Trends in Immunology, 2003, 24, 242-248.	6.8	702
118	Response to von Bubnoff et al.: Still new perspectives on IDO function?. Trends in Immunology, 2003, 24, 297.	6.8	0
119	CTLA-4, T helper lymphocytes and dendritic cells: an internal perspective of T-cell homeostasis. Trends in Molecular Medicine, 2003, 9, 133-135.	6.7	17
120	Response from Romani et al.: Microbial virulence results from the interaction between host and microorganism. Trends in Microbiology, 2003, 11, 158-159.	7.7	6
121	Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation. Journal of Immunology, 2003, 171, 2581-2587.	0.8	100
122	A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2003, 198, 153-160.	8.5	193
123	Tryptophan Catabolism in Nonobese Diabetic Mice. Advances in Experimental Medicine and Biology, 2003, 527, 47-54.	1.6	20
124	CD40 Ligand and CTLA-4 Are Reciprocally Regulated in the Th1 Cell Proliferative Response Sustained by CD8+ Dendritic Cells. Journal of Immunology, 2002, 169, 1182-1188.	0.8	21
125	The Immunosuppressive Activity of Proinflammatory Cytokines in Experimental Models Potential for Therapeutic Intervention in Autoimmunity. Inflammation and Allergy: Drug Targets, 2002, 1, 77-87.	3.1	16
126	Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells. International Immunology, 2002, 14, 65-68.	4.0	233

#	Article	IF	Citations
127	IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells. Journal of Immunology, 2002, 168, 5448-5454.	0.8	214
128	Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends in Microbiology, 2002, 10, 508-514.	7.7	127
129	T cell apoptosis by tryptophan catabolism. Cell Death and Differentiation, 2002, 9, 1069-1077.	11.2	860
130	CTLA-4–Ig regulates tryptophan catabolism in vivo. Nature Immunology, 2002, 3, 1097-1101.	14.5	1,077
131	Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Critical Reviews in Immunology, 2002, 22, 373-90.	0.5	20
132	IL-6 Inhibits the Tolerogenic Function of CD8 \hat{l}_{\pm} + Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Journal of Immunology, 2001, 167, 708-714.	0.8	168
133	CD40 Ligation Ablates the Tolerogenic Potential of Lymphoid Dendritic Cells. Journal of Immunology, 2001, 166, 277-283.	0.8	129
134	Positive Regulatory Role of IL-12 in Macrophages and Modulation by IFN- \hat{I}^3 . Journal of Immunology, 2001, 167, 221-227.	0.8	105
135	IFN-Î ³ Inhibits Presentation of a Tumor/Self Peptide by CD8αⰒ Dendritic Cells Via Potentiation of the CD8α+ Subset. Journal of Immunology, 2000, 165, 1357-1363.	0.8	97
136	IL-9 Protects Mice from Gram-Negative Bacterial Shock: Suppression of TNF- \hat{l} ±, IL-12, and IFN- \hat{l} ³, and Induction of IL-10. Journal of Immunology, 2000, 164, 4197-4203.	0.8	64
137	Th1 and Th2 Cell Clones to a Poorly Immunogenic Tumor Antigen Initiate CD8+ T Cell-Dependent Tumor Eradication In Vivo. Journal of Immunology, 2000, 165, 5495-5501.	0.8	77
138	IL-12 INDUCES SDS-STABLE CLASS II $\hat{l}\pm\hat{l}^2$ DIMERS IN MURINE DENDRITIC CELLS. Cytokine, 2000, 12, 401-404.	3.2	8
139	DUAL EFFECT OF IL-4 ON RESISTANCE TO SYSTEMIC GRAM-NEGATIVE INFECTION AND PRODUCTION OF TNF-α. Cytokine, 2000, 12, 417-421.	3.2	20
140	Immunogenicity of tumor peptides: importance of peptide length and stability of peptide/MHC class II complex. Cancer Immunology, Immunotherapy, 1999, 48, 195-203.	4.2	16
141	IL-12 acts selectively on CD8 alpha- dendritic cells to enhance presentation of a tumor peptide in vivo. Journal of Immunology, 1999, 163, 3100-5.	0.8	50
142	IL-12 Acts Directly on DC to Promote Nuclear Localization of NF- \hat{l}^{0} B and Primes DC for IL-12 Production. Immunity, 1998, 9, 315-323.	14.3	264
143	Dendritic Cells, Interleukin 12, and CD4+ Lymphocytes in the Initiation of Class I-restricted Reactivity to a Tumor/Self Peptide. Critical Reviews in Immunology, 1998, 18, 87-98.	0.5	38
144	Initiation of T-Helper Cell Immunity to Candida albicans by IL-12: The Role of Neutrophils. , 1997, 68, 110-135.		67

#	Article	IF	Citations
145	Interleukin-12 in infectious diseases. Clinical Microbiology Reviews, 1997, 10, 611-636.	13.6	200
146	Circulating Levels of IL-10 Are Critically Related to Growth and Rejection Patterns of Murine Mastocytoma Cells. Cellular Immunology, 1997, 181, 109-119.	3.0	5
147	Dendritic Cells and Interleukin 12 as Adjuvants for Tumor-Specific Vaccines. Advances in Experimental Medicine and Biology, 1997, 417, 579-582.	1.6	6
148	A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. Journal of Immunology, 1997, 158, 3593-602.	0.8	92
149	Evidence for tumor necrosis factor \hat{l}_{\pm} as a mediator of the toxicity of a cyclooxygenase inhibitor in Gram-negative sepsis. European Journal of Pharmacology, 1996, 307, 191-199.	3.5	15
150	Neutrophils and the adaptive immune response to Candida albicans. Research in Immunology, 1996, 147, 512-518.	0.9	26
151	Biological Role of Th Cell Subsets in Candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-137.	1.7	33
152	A retroviral peptide encoded by mutated env p15E gene is recognized by specific CD8+ T lymphocytes on drug-treated murine mastocytoma P815. International Journal of Immunopharmacology, 1996, 18, 563-576.	1.1	8
153	Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans Journal of Experimental Medicine, 1996, 183, 1345-1355.	8.5	299
154	IL-12 is both required and sufficient for initiating T cell reactivity to a class I-restricted tumor peptide (P815AB) following transfer of P815AB-pulsed dendritic cells. Journal of Immunology, 1996, 157, 1589-97.	0.8	39
155	Biological role of Th cell subsets in candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-37.	1.7	21
156	Interleukin-4 and -10 exacerbate candidiasis in mice. European Journal of Immunology, 1995, 25, 1559-1565.	2.9	124
157	CD8+ cell activation to a major mastocytoma rejection antigen, P815AB: requirement for tumâ^ or helper peptides in priming for skin test reactivity to a P815AB-related peptide. European Journal of Immunology, 1995, 25, 2797-2802.	2.9	30
158	T helper cell dichotomy toCandida albicans: Implications for pathology, therapy, and vaccine design. Immunologic Research, 1995, 14, 148-162.	2.9	29
159	T Helper Cell Type 1 (Th1)- and Th2-like Responses Are Present in Mice with Gastric Candidiasis but Protective Immunity Is Associated with Th1 Development. Journal of Infectious Diseases, 1995, 171, 1279-1288.	4.0	128
160	IL12 in Candida albicans infections. Research in Immunology, 1995, 146, 532-538.	0.9	40
161	Anticancer drug toxicity via cytokine production: the hydroxyurea paradigm. Toxicology Letters, 1995, 82-83, 167-171.	0.8	4
162	A TH1-TH2-like switch in candidiasis: new perspectives for therapy. Trends in Microbiology, 1995, 3, 237-240.	7.7	118

#	Article	IF	CITATIONS
163	TGF-beta is important in determining the in vivo patterns of susceptibility or resistance in mice infected with Candida albicans. Journal of Immunology, 1995, 155, 1349-60.	0.8	61
164	Multiple point mutations in an endogenous retroviral gene confer high immunogenicity on a drug-treated murine tumor. Journal of Immunology, 1995, 154, 4630-41.	0.8	12
165	Cure of Murine Candidiasis by Recombinant Soluble Interleukin-4 Receptor. Journal of Infectious Diseases, 1994, 169, 1325-1331.	4.0	102
166	Endogenous Retroviral gp70 Genes of the Murine Lymphoma L5178Y: Analysis of Restriction Fragment Polymorphism upon Induction of Drug-Mediated Immunogenicity. Viral Immunology, 1994, 7, 155-167.	1.3	3
167	Interleukin-12 but not interferon- \hat{l}^3 production correlates with induction of T helper type-1 phenotype in murine candidiasis. European Journal of Immunology, 1994, 24, 909-915.	2.9	98
168	Use of a skin test assay to determine tumor-specific CD8+ T cell reactivity. European Journal of Immunology, 1994, 24, 1446-1452.	2.9	34
169	Cytokines and tumours: problems and perspectives. Pharmacological Research, 1994, 29, 111-119.	7.1	1
170	Mechanisms of cell-mediated immunity in fungal infection. Medical Mycology, 1994, 32, 123-131.	0.7	13
171	Tolerance to staphylococcal enterotoxin B initiated Th1 cell differentiation in mice infected with Candida albicans. Infection and Immunity, 1994, 62, 4047-4053.	2.2	17
172	Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. Journal of Immunology, 1994, 152, 3514-21.	0.8	138
173	IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. Journal of Immunology, 1994, 153, 5167-75.	0.8	90
174	Immunogenic properties of retroviral protein p15e from drug-treated murine mastocytoma P815. International Journal of Cancer, 1993, 55, 344-350.	5.1	6
175	Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. European Journal of Immunology, 1993, 23, 1034-1038.	2.9	268
176	Cell-mediated immunity to chemically xenogenized tumorsâ€"VI. The effect of cell treatment with retroviral env antisense oligonucleotides. International Journal of Immunopharmacology, 1993, 15, 567-572.	1.1	0
177	Accelerated Hematopoietic Recovery and Protective Effect of the Cyclooxygenase Inhibitor Indomethacin in Bacterial Infection of Neutropenic Mice. Cellular Immunology, 1993, 147, 314-352.	3.0	12
178	Mucosal and Systemic T Helper Cell Function after Intragastric Colonization of Adult Mice with Candida albicans. Journal of Infectious Diseases, 1993, 168, 1449-1457.	4.0	71
179	Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infection and Immunity, 1993, 61, 3769-3774.	2.2	37
180	Anti-Cytokine Therapy of Murine Candidiasis. , 1993, , 195-200.		0

#	Article	IF	Citations
181	Chemical Xenogenization of Experimental Tumors by Antineoplastic Drugs. , 1993, , 147-161.		O
182	CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. Journal of Immunology, 1993, 150, 925-31.	0.8	137
183	Course of Primary Candidiasis in T Cell-Depleted Mice Infected with Attenuated Variant Cells. Journal of Infectious Diseases, 1992, 166, 1384-1392.	4.0	54
184	Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis Journal of Experimental Medicine, 1992, 176, 19-25.	8.5	220
185	Experimental Studies of Immunotoxicity of a Photosensitizing Agent (Photofrin II) in Mice. Journal of Chemotherapy, 1992, 4, 290-296.	1.5	2
186	Molecular and genomic aspects of xenogenizing-alkylating drugs. Pharmacological Research, 1992, 26, 24-25.	7.1	0
187	Immune recognition of drug-induced tumor antigens: A study with a nonimmunogenic, revertant clone. Pharmacological Research, 1992, 26, 186-187.	7.1	1
188	Antagonistic effect of IL-2 on DTIC-induced impairment of tumor-specific cell-mediated immunity in vitro. Pharmacological Research, 1992, 26, 106-107.	7.1	1
189	Antigen-specific cytolysis of infected cells in murine candidiasis. European Journal of Epidemiology, 1992, 8, 368-376.	5.7	5
190	O 6-Methylguanine-DNA methyltransferase activity and induction of novel immunogenicity in murine tumor cells treated with methylating agents. Cancer Chemotherapy and Pharmacology, 1992, 29, 277-282.	2.3	13
191	Tumor-specific L3T4+ and Lyt-2+ lymphocytes in mice primed to mutagenized cell variants. International Journal of Immunopharmacology, 1992, 14, 915-921.	1.1	2
192	Modulation of colony-stimulating activity by interleukin 1 mice: opposing effects of combined treatment with indomethacin of prostaglandin E2. International Journal of Immunopharmacology, 1992, 14, 655-659.	1.1	3
193	Involvement of the Th1 subset of CD4+ T cells in acquired immunity to mouse infection with Trypanosoma equiperdum. Cellular Immunology, 1992, 143, 261-271.	3.0	8
194	Immunogenic tumor variants induced by drug treatment of the L5178Y lymphoma: Search for serologically defined antigens at the clonal level. International Journal of Cancer, 1992, 52, 372-377.	5.1	8
195	Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infection and Immunity, 1992, 60, 4950-4952.	2.2	70
196	Combination Therapies with Cytokines and Anti-Cytokines in Murine Opportunistic Infections., 1992,, 97-104.		0
197	Cancer Immunotherapy: Preclinical Studies with Triazene Compounds., 1992,, 293-301.		0
198	Intrasplenic immunization for the induction of humoral and cell-mediated immunity to nitrocellulose-bound antigen. Journal of Immunological Methods, 1991, 137, 9-15.	1.4	17

#	Article	IF	CITATIONS
199	Modulation of circulating colony-stimulating activity in mice: Combined effects of IL-1 and bacterial or indomethacin treatment. International Journal of Immunopharmacology, 1991, 13, 955-960.	1.1	2
200	Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. European Journal of Immunology, 1991, 21, 1567-1570.	2.9	22
201	Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infection and Immunity, 1991, 59, 4647-4654.	2.2	207
202	Macrophage colony-stimulating factor in murine candidiasis: serum and tissue levels during infection and protective effect of exogenous administration. Infection and Immunity, 1991, 59, 868-872.	2.2	90
203	Antibacterial resistance induced by recombinant interleukin 1 in myelosuppressed mice: Effect of treatment schedule and correlation with colony-stimulating activity in the bloodstream. Cellular Immunology, 1990, 128, 250-260.	3.0	18
204	Identification and immunogenic properties of an 80-kDa surface antigen on a drug-treated tumor variant: Relationship to MuLV gp70. European Journal of Immunology, 1990, 20, 629-636.	2.9	25
205	T-cell subsets, IFN-Î ³ production and efferent specificity in anti-parental tumor immunity induced by mouse sensitization with xenogenized variant cells. International Journal of Cancer, 1990, 46, 653-657.	5.1	6
206	Cell-mediated immunity to chemically xenogenized tumors. V. Failure of novel antigens to increase the frequency of tumor-specific cytotoxic T cells. International Journal of Immunopharmacology, 1990, 12, 743-749.	1.1	5
207	Xenogenization of Experimental Tumors by Triazene Derivatives. , 1990, , 79-89.		3
208	T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. Journal of Immunology, 1990, 144, 4333-9.	0.8	72
209	Protective immunity induced by low-virulence Candida albicans: Cytokine production in the development of the anti-infectious state. Cellular Immunology, 1989, 124, 334-344.	3.0	84
210	Changes in the tumorigenic and metastatic properties of murine melanoma cells treated with a triazene derivative. Clinical and Experimental Metastasis, 1989, 7, 329-341.	3.3	7
211	Delayed-type hypersensitivity to tumor antigens co-expressed with immunogenic determinants induced by xenogenization. International Journal of Cancer, 1989, 43, 279-284.	5.1	24
212	Cell-mediated immunity to chemically xenogenized tumors $\hat{a} \in \mathbb{N}$. Production of lymphokine activity by, and in response to, highly immunogenic cells. International Journal of Immunopharmacology, 1989, 11, 537-542.	1.1	7
213	Lack of correlation between DNA-methylating activity and appearance of the immunogenic phenotype in clones of a murine lymphoma treated with mutagens. Cancer Immunology, Immunotherapy, 1989, 29, 139-43.	4.2	10
214	Toward characterization of novel drug-induced antigens. Pharmacological Research, 1989, 21, 663-664.	7.1	0
215	Search for cytogenetic markers in chemically xenogenized murine lymphomas. Pharmacological Research, 1989, 21, 667-668.	7.1	0
216	Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. Infection and Immunity, 1989, 57, 3581-3587.	2.2	96

#	Article	IF	CITATIONS
217	Regulation of tumor antigen expression by drugs acting as mutagens and/or gene activators. Pharmacological Research Communications, 1988, 20, 441-442.	0.2	O
218	Generation of monoclonal antibodies to a chemically xenogenized murine lymphoma. Pharmacological Research Communications, 1988, 20, 443-444.	0.2	1
219	In vitro evaluation of the immunoactive properties of potentially useful immunopotentiators. Pharmacological Research Communications, 1988, 20, 64.	0.2	1
220	Pharmacologic manipulation of tumor cell immunogenicity (xenogenization) as a means of inducing their rejection in experimental immunotherapy. Pharmacological Research Communications, 1988, 20, 318.	0.2	0
221	Induction of tumor suppression and delayed-type footpad reaction by transfer of lymphocytes sensitized to a xenogenized tumor variant. International Journal of Cancer, 1988, 42, 71-75.	5.1	16
222	Cell-mediated immunity to chemically xenogenized tumors I. Inhibition by specific antisera and H-2 association of the novel antigens. Cancer Immunology, Immunotherapy, 1988, 26, 48-54.	4.2	16
223	Cell-mediated immunity to chemically xenogenized tumorsâ€"III. Generation of monoclonal antibodies interfering with reactivity to novel antigens. International Journal of Immunopharmacology, 1988, 10, 803-809.	1.1	12
224	Cell-mediated immunity to chemically xenogenized tumors. Cellular Immunology, 1988, 111, 365-378.	3.0	15
225	Immunomodulation by a low-virulence, agerminative variant of <i>Candida albicans </i> . Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. Medical Mycology, 1988, 26, 285-299.	0.7	91
226	Chemical xenogenization of experimental tumors. Cancer and Metastasis Reviews, 1987, 6, 93-111.	5.9	43
227	Dna methylating activity in murine lymphoma cells xenogenized by triazene derivatives. International Journal of Cancer, 1987, 39, 769-773.	5.1	14
228	Inhibition of murine lymphoma growth by adoptive transfer of lymphocytes sensitized to a xenogenized tumor variant. International Journal of Cancer, 1987, 40, 7-11.	5.1	17
229	Amphotericin-B Induced Immunomodulation of Resistance Against Candida Albicans Infection. , 1987, , 91-99.		O
230	DNA methylating activity in murine lymphoma cells treated with xenogenizing chemicals. Cancer Detection and Prevention Supplement: Official Publication of the International Society for Preventive Oncology, Inc, 1987, 1, 311-6.	0.0	1
231	Involvement of host macrophages in the immunoadjuvant activity of amphotericin B in a mouse fungal infection model Journal of Antibiotics, 1986, 39, 846-855.	2.0	21
232	Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infection and Immunity, 1986, 51, 668-674.	2.2	267
233	Immunoadjuvant activity of amphotericin B as displayed in mice infected with Candida albicans. Antimicrobial Agents and Chemotherapy, 1985, 27, 625-631.	3.2	48
234	Adoptive immunotherapy of intracerebral murine lymphomas: Role of different lymphoid populations. International Journal of Cancer, 1985, 35, 659-665.	5.1	19

#	Article	IF	CITATIONS
235	Humoral response against murine lymphoma cells xenogenized by drug treatmentin vivo. International Journal of Cancer, 1985, 36, 225-231.	5.1	24
236	Chemical xenogenization of tumor cells. Trends in Pharmacological Sciences, 1985, 6, 485-487.	8.7	15
237	Combined effects of chemotherapy and host antitumor response in a murine histocompatible lymphoma model. International Journal of Immunopharmacology, 1984, 6, 217-222.	1.1	0
238	Chemical xenogenization of murine lymphoma cells with triazene derivatives: Immunotoxicological studies. Cancer Immunology, Immunotherapy, 1984, 17, 213-7.	4.2	16
239	Enhancement of natural killer cell activity in mice by treatment with a thymic factor. Cancer Immunology, Immunotherapy, 1984, 17, 51-5.	4.2	15
240	Modulating Effects of Thymic Factors on Natural Cell-Mediated Reactivities of Natural and Cyclophosphamide-Treated Mice., 1984,, 139-144.		0
241	Systemic adoptive immunotherapy of a highly immunogenic murine lymphoma growing in the brain. International Journal of Cancer, 1983, 31, 477-482.	5.1	19
242	Antilymphoma graft responses in the mouse brain: A study oft-dependent functions. International Journal of Cancer, 1983, 31, 769-774.	5.1	4
243	Phagocytic killing of <i>Candida albicans </i> by different murine effector cells. Medical Mycology, 1983, 21, 271-286.	0.7	202
244	Correlation between in vivo and in vitro studies of modulation of resistance to experimental Candida albicans infection by cyclophosphamide in mice. Infection and Immunity, 1983, 40, 46-55.	2.2	82
245	Natural cell-mediated cytotoxicity against Candida albicans induced by cyclophosphamide: nature of the in vitro cytotoxic effector. Infection and Immunity, 1983, 42, 1-9.	2.2	65
246	A radiolabel release microassay for phagocytic killing of Candida albicans. Journal of Immunological Methods, 1982, 52, 369-377.	1.4	50
247	Cellular mechanisms underlying the adjuvant activity of Candida albicans in a mouse lymphoma model. International Journal of Cancer, 1982, 29, 483-488.	5.1	14
248	Drug-mediated changes of tumour cell immunogenicity and antigenicity. International Journal of Tissue Reactions, 1982, 4, 189-99.	0.2	1
249	Depression of Hepatic Biotransformations by Chemical Immunoadjuvants. Immunopharmacology and Immunotoxicology, 1981, 3, 251-264.	0.8	10
250	Drug-mediated increase of tumor immunogenicity in vivo for a new approach to experimental cancer immunotherapy. Cancer Research, 1981, 41, 681-7.	0.9	26
251	Cytotoxic effector cells with the characteristics of natural killer cells in the lungs of mice. International Journal of Cancer, 1980, 25, 153-158.	5.1	68
252	In vivo natural reactivity of mice against tumor cells. International Journal of Cancer, 1980, 25, 475-486.	5.1	166

#	Article	IF	CITATIONS
253	Combined effects of antineoplastic agents and anti-lymphoma allograft reactions. European Journal of Cancer, 1980, 16, 23-33.	0.9	25
254	Cytolytic and cytostatic anti-tumor activities of macrophages from mice injected with murine sarcoma virus. International Journal of Cancer, 1979, 23, 123-133.	5.1	50
255	Augmentation of natural killer activity by pyran copolymer in mice. International Journal of Cancer, 1979, 24, 656-661.	5.1	28
256	Activation of mouse macrophages by pyran copolymer and role in augmentation of natural killer activity. International Journal of Cancer, 1979, 24, 819-825.	5.1	33
257	Adriamycin-induced antitumor response in lethally irradiated mice. Immunopharmacology, 1979, 1, 211-220.	2.0	20
258	Natural Killer Cells: Characteristics and Regulation of Activity. Immunological Reviews, 1979, 44, 43-70.	6.0	589
259	Rapid in vivo assay of mouse natural killer cell activity. Journal of the National Cancer Institute, 1979, 63, 1041-5.	6.3	115
260	Long-term depression of two primary immune responses induced by a single dose of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC). Experientia, 1978, 34, 799-800.	1.2	17
261	Immunopharmacology of pyran copolymer. Pharmacological Research Communications, 1978, 10, 489-501.	0.2	7
262	Growth Inhibition of Normal or Drug-Treated Lymphoma Cells in Lethally Irradiated Mice2. Journal of the National Cancer Institute, 1978, 60, 1083-1090.	6.3	14
263	GROWTH AND REJECTION PATTERNS OF MURINE LYMPHOMA CELLS ANTIGENICALLY ALTERED FOLLOWING DRUG TREATMENT IN VIVO. Transplantation, 1978, 25, 63-68.	1.0	21
264	Murine leukemia growth inhibition or enhancement following immunization with tumor cells antigenically altered by drug treatment. Pharmacological Research Communications, 1977, 9, 349-358.	0.2	3