Paolo Puccetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/801254/publications.pdf Version: 2024-02-01

264 papers	24,531 citations	7096 78 h-index	8167 148 g-index
272	272	272	19335
all docs	docs citations	times ranked	citing authors

PAOLO PUCCETTI

#	Article	IF	CITATIONS
1	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	14.3	1,663
2	Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 2003, 4, 1206-1212.	14.5	1,172
3	CTLA-4–Ig regulates tryptophan catabolism in vivo. Nature Immunology, 2002, 3, 1097-1101.	14.5	1,077
4	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.8	943
5	T cell apoptosis by tryptophan catabolism. Cell Death and Differentiation, 2002, 9, 1069-1077.	11.2	860
6	Tolerance, DCs and tryptophan: much ado about IDO. Trends in Immunology, 2003, 24, 242-248.	6.8	702
7	Natural Killer Cells: Characteristics and Regulation of Activity. Immunological Reviews, 1979, 44, 43-70.	6.0	589
8	Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 2011, 12, 870-878.	14.5	577
9	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
10	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	27.8	492
11	ILâ€⊋3 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706.	2.9	490
12	IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nature Reviews Immunology, 2007, 7, 817-823.	22.7	423
13	IL-23 and Th17 Cells Enhance Th2-Cell–mediated Eosinophilic Airway Inflammation in Mice. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1023-1032.	5.6	369
14	Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 2010, 59, 595-604.	12.1	313
15	Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans Journal of Experimental Medicine, 1996, 183, 1345-1355.	8.5	299
16	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
17	Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing ofCandida albicans. European Journal of Immunology, 1993, 23, 1034-1038.	2.9	268
18	Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infection and Immunity, 1986, 51, 668-674.	2.2	267

#	Article	IF	CITATIONS
19	IL-12 Acts Directly on DC to Promote Nuclear Localization of NF-κB and Primes DC for IL-12 Production. Immunity, 1998, 9, 315-323.	14.3	264
20	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	14.5	262
21	IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology, 2010, 3, 361-373.	6.0	247
22	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	14.3	241
23	Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells. International Immunology, 2002, 14, 65-68.	4.0	233
24	Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis Journal of Experimental Medicine, 1992, 176, 19-25.	8.5	220
25	IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells. Journal of Immunology, 2002, 168, 5448-5454.	0.8	214
26	Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infection and Immunity, 1991, 59, 4647-4654.	2.2	207
27	Murine Plasmacytoid Dendritic Cells Initiate the Immunosuppressive Pathway of Tryptophan Catabolism in Response to CD200 Receptor Engagement. Journal of Immunology, 2004, 173, 3748-3754.	0.8	203
28	Phagocytic killing of <i>Candida albicans</i> by different murine effector cells. Medical Mycology, 1983, 21, 271-286.	0.7	202
29	Interleukin-12 in infectious diseases. Clinical Microbiology Reviews, 1997, 10, 611-636.	13.6	200
30	A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2003, 198, 153-160.	8.5	193
31	Immunity and Tolerance to <i>Aspergillus</i> Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. Journal of Immunology, 2006, 176, 1712-1723.	0.8	187
32	SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20828-20833.	7.1	187
33	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	1.4	183
34	Thymosin α1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	1.4	172
35	IL-6 Inhibits the Tolerogenic Function of CD8α+ Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Journal of Immunology, 2001, 167, 708-714.	0.8	168
36	In vivo natural reactivity of mice against tumor cells. International Journal of Cancer, 1980, 25, 475-486.	5.1	166

#	Article	IF	CITATIONS
37	Kynurenine Pathway Enzymes in Dendritic Cells Initiate Tolerogenesis in the Absence of Functional IDO. Journal of Immunology, 2006, 177, 130-137.	0.8	164
38	Indoleamine 2,3â€dioxygenase: From catalyst to signaling function. European Journal of Immunology, 2012, 42, 1932-1937.	2.9	160
39	Functional yet Balanced Reactivity to <i>Candida albicans</i> Requires TRIF, MyD88, and IDO-Dependent Inhibition of <i>Rorc</i> . Journal of Immunology, 2007, 179, 5999-6008.	0.8	159
40	Cutting Edge: Autocrine TGF-β Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells. Journal of Immunology, 2008, 181, 5194-5198.	0.8	154
41	Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nature Medicine, 2010, 16, 897-902.	30.7	138
42	Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. Journal of Immunology, 1994, 152, 3514-21.	0.8	138
43	CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. Journal of Immunology, 1993, 150, 925-31.	0.8	137
44	CD40 Ligation Ablates the Tolerogenic Potential of Lymphoid Dendritic Cells. Journal of Immunology, 2001, 166, 277-283.	0.8	129
45	A Crucial Role for Tryptophan Catabolism at the Host/ <i>Candida albicans</i> Interface. Journal of Immunology, 2005, 174, 2910-2918.	0.8	129
46	T Helper Cell Type 1 (Th1)- and Th2-like Responses Are Present in Mice with Gastric Candidiasis but Protective Immunity Is Associated with Th1 Development. Journal of Infectious Diseases, 1995, 171, 1279-1288.	4.0	128
47	Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends in Microbiology, 2002, 10, 508-514.	7.7	127
48	CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2004, 200, 1051-1062.	8.5	125
49	Interleukin-4 and -10 exacerbate candidiasis in mice. European Journal of Immunology, 1995, 25, 1559-1565.	2.9	124
50	Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends in Microbiology, 2006, 14, 183-189.	7.7	124
51	Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunology, 2009, 2, 362-374.	6.0	122
52	TGF-Î ² and kynurenines as the key to infectious tolerance. Trends in Molecular Medicine, 2009, 15, 41-49.	6.7	121
53	A TH1-TH2-like switch in candidiasis: new perspectives for therapy. Trends in Microbiology, 1995, 3, 237-240.	7.7	118
54	Rapid in vivo assay of mouse natural killer cell activity. Journal of the National Cancer Institute, 1979, 63, 1041-5.	6.3	115

#	Article	IF	CITATIONS
55	Positive Regulatory Role of IL-12 in Macrophages and Modulation by IFN-γ. Journal of Immunology, 2001, 167, 221-227.	0.8	105
56	Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 2003, 6, 338-343.	5.1	105
57	IL-17 and Therapeutic Kynurenines in Pathogenic Inflammation to Fungi. Journal of Immunology, 2008, 180, 5157-5162.	0.8	105
58	Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes and Infection, 2009, 11, 133-141.	1.9	104
59	Cure of Murine Candidiasis by Recombinant Soluble Interleukin-4 Receptor. Journal of Infectious Diseases, 1994, 169, 1325-1331.	4.0	102
60	Lack of Toll IL-1R8 Exacerbates Th17 Cell Responses in Fungal Infection. Journal of Immunology, 2008, 180, 4022-4031.	0.8	102
61	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	12.8	102
62	IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis. PLoS Pathogens, 2013, 9, e1003486.	4.7	102
63	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.8	101
64	Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation. Journal of Immunology, 2003, 171, 2581-2587.	0.8	100
65	Interleukin-12 but not interferon-γ production correlates with induction of T helper type-1 phenotype in murine candidiasis. European Journal of Immunology, 1994, 24, 909-915.	2.9	98
66	IFN-Î ³ Inhibits Presentation of a Tumor/Self Peptide by CD8αâ^' Dendritic Cells Via Potentiation of the CD8α+ Subset. Journal of Immunology, 2000, 165, 1357-1363.	0.8	97
67	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	1.2	97
68	Role of L3T4+ lymphocytes in protective immunity to systemic Candida albicans infection in mice. Infection and Immunity, 1989, 57, 3581-3587.	2.2	96
69	A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. Journal of Immunology, 1997, 158, 3593-602.	0.8	92
70	Immunomodulation by a low-virulence, agerminative variant of <i>Candida albicans</i> . Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. Medical Mycology, 1988, 26, 285-299.	0.7	91
71	Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nature Medicine, 2017, 23, 590-600.	30.7	91
72	Macrophage colony-stimulating factor in murine candidiasis: serum and tissue levels during infection and protective effect of exogenous administration. Infection and Immunity, 1991, 59, 868-872.	2.2	90

#	Article	IF	CITATIONS
73	IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. Journal of Immunology, 1994, 153, 5167-75.	0.8	90
74	CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Reports, 2015, 12, 1789-1801.	6.4	89
75	Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-Ig from Immune Adjuvant to Suppressant. Journal of Immunology, 2005, 174, 6582-6586.	0.8	88
76	Targeting indoleamine-2,3-dioxygenase in cancer: Scientific rationale and clinical evidence. , 2019, 196, 105-116.		88
77	Thymosin Â1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New York Academy of Sciences, 2007, 1112, 326-338.	3.8	87
78	The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. International Immunology, 2004, 16, 149-161.	4.0	86
79	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	5.6	86
80	Protective immunity induced by low-virulence Candida albicans: Cytokine production in the development of the anti-infectious state. Cellular Immunology, 1989, 124, 334-344.	3.0	84
81	Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. Journal of Experimental Medicine, 2009, 206, 2511-2526.	8.5	84
82	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	12.8	84
83	Immunosuppression Via Tryptophan Catabolism: The Role of Kynurenine Pathway Enzymes. Transplantation, 2007, 84, S17-S20.	1.0	82
84	Correlation between in vivo and in vitro studies of modulation of resistance to experimental Candida albicans infection by cyclophosphamide in mice. Infection and Immunity, 1983, 40, 46-55.	2.2	82
85	Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Experimental Neurology, 2016, 275, 116-125.	4.1	81
86	Amino-acid sensing and degrading pathways in immune regulation. Cytokine and Growth Factor Reviews, 2017, 35, 37-45.	7.2	79
87	Microbiota control of a tryptophan–AhR pathway in disease tolerance to fungi. European Journal of Immunology, 2014, 44, 3192-3200.	2.9	78
88	Th1 and Th2 Cell Clones to a Poorly Immunogenic Tumor Antigen Initiate CD8+ T Cell-Dependent Tumor Eradication In Vivo. Journal of Immunology, 2000, 165, 5495-5501.	0.8	77
89	Accumulation of an Endogenous Tryptophan-Derived Metabolite in Colorectal and Breast Cancers. PLoS ONE, 2015, 10, e0122046.	2.5	76
90	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. International Immunology, 2005, 17, 1429-1438.	4.0	74

#	Article	IF	CITATIONS
91	Indoleamine 2,3-Dioxygenase 1 (IDO1) Is Up-Regulated in Thyroid Carcinoma and Drives the Development of an Immunosuppressant Tumor Microenvironment. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E832-E840.	3.6	73
92	T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. Journal of Immunology, 1990, 144, 4333-9.	0.8	72
93	Mucosal and Systemic T Helper Cell Function after Intragastric Colonization of Adult Mice with Candida albicans. Journal of Infectious Diseases, 1993, 168, 1449-1457.	4.0	71
94	Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infection and Immunity, 1992, 60, 4950-4952.	2.2	70
95	Cytotoxic effector cells with the characteristics of natural killer cells in the lungs of mice. International Journal of Cancer, 1980, 25, 153-158.	5.1	68
96	On watching the watchers: IDO and type I/II IFN. European Journal of Immunology, 2007, 37, 876-879.	2.9	68
97	Initiation of T-Helper Cell Immunity to Candida albicans by IL-12: The Role of Neutrophils. , 1997, 68, 110-135.		67
98	Natural cell-mediated cytotoxicity against Candida albicans induced by cyclophosphamide: nature of the in vitro cytotoxic effector. Infection and Immunity, 1983, 42, 1-9.	2.2	65
99	IL-9 Protects Mice from Gram-Negative Bacterial Shock: Suppression of TNF-α, IL-12, and IFN-γ, and Induction of IL-10. Journal of Immunology, 2000, 164, 4197-4203.	0.8	64
100	TGF-beta is important in determining the in vivo patterns of susceptibility or resistance in mice infected with Candida albicans. Journal of Immunology, 1995, 155, 1349-60.	0.8	61
101	Tryptophan Catabolism in IDO+ Plasmacytoid Dendritic Cells. Current Drug Metabolism, 2007, 8, 209-216.	1.2	59
102	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58
103	Generation of T cell regulatory activity by plasmacytoid dendritic cells and tryptophan catabolism. Blood Cells, Molecules, and Diseases, 2008, 40, 101-105.	1.4	57
104	Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease. Frontiers in Immunology, 2019, 10, 1565.	4.8	55
105	Course of Primary Candidiasis in T Cell-Depleted Mice Infected with Attenuated Variant Cells. Journal of Infectious Diseases, 1992, 166, 1384-1392.	4.0	54
106	Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism. European Journal of Immunology, 2006, 36, 8-11.	2.9	53
107	The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals. Frontiers in Immunology, 2015, 6, 58.	4.8	53
108	Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017.	4.4	52

#	Article	IF	CITATIONS
109	Distinct roles of immunoreceptor tyrosineâ€based motifs in immunosuppressive indoleamine 2,3â€dioxygenase 1. Journal of Cellular and Molecular Medicine, 2017, 21, 165-176.	3.6	51
110	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
111	Cytolytic and cytostatic anti-tumor activities of macrophages from mice injected with murine sarcoma virus. International Journal of Cancer, 1979, 23, 123-133.	5.1	50
112	A radiolabel release microassay for phagocytic killing of Candida albicans. Journal of Immunological Methods, 1982, 52, 369-377.	1.4	50
113	IL-12 acts selectively on CD8 alpha- dendritic cells to enhance presentation of a tumor peptide in vivo. Journal of Immunology, 1999, 163, 3100-5.	0.8	50
114	Immunoadjuvant activity of amphotericin B as displayed in mice infected with Candida albicans. Antimicrobial Agents and Chemotherapy, 1985, 27, 625-631.	3.2	48
115	Forced IDO 1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 2082-2091.	3.6	47
116	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	4.8	47
117	Clotting factor concentrate switching and inhibitor development in hemophilia A. Blood, 2012, 120, 720-727.	1.4	45
118	Stem cells from human amniotic fluid exert immunoregulatory function <i>via</i> secreted indoleamine 2,3â€dioxygenase1. Journal of Cellular and Molecular Medicine, 2015, 19, 1593-1605.	3.6	45
119	Chemical xenogenization of experimental tumors. Cancer and Metastasis Reviews, 1987, 6, 93-111.	5.9	43
120	The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Seminars in Immunopathology, 2015, 37, 163-171.	6.1	43
121	Ligand Binding and Functional Selectivity of <scp>l</scp> -Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling, 2014, 54, 3373-3383.	5.4	42
122	Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity, 2022, 55, 1032-1050.e14.	14.3	41
123	IL12 in Candida albicans infections. Research in Immunology, 1995, 146, 532-538.	0.9	40
124	IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Journal of Clinical Investigation, 2015, 125, 3766-3781.	8.2	39
125	IL-12 is both required and sufficient for initiating T cell reactivity to a class I-restricted tumor peptide (P815AB) following transfer of P815AB-pulsed dendritic cells. Journal of Immunology, 1996, 157, 1589-97.	0.8	39
126	Dendritic Cells, Interleukin 12, and CD4+ Lymphocytes in the Initiation of Class l-restricted Reactivity to a Tumor/Self Peptide. Critical Reviews in Immunology, 1998, 18, 87-98.	0.5	38

#	Article	IF	CITATIONS
127	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	2.9	38
128	Innovative extraction procedure for obtaining high pure lycopene from tomato. European Food Research and Technology, 2008, 226, 327-335.	3.3	38
129	Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infection and Immunity, 1993, 61, 3769-3774.	2.2	37
130	Use of a skin test assay to determine tumor-specific CD8+ T cell reactivity. European Journal of Immunology, 1994, 24, 1446-1452.	2.9	34
131	Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes. Trends in Molecular Medicine, 2018, 24, 931-941.	6.7	34
132	Activation of mouse macrophages by pyran copolymer and role in augmentation of natural killer activity. International Journal of Cancer, 1979, 24, 819-825.	5.1	33
133	Biological Role of Th Cell Subsets in Candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-137.	1.7	33
134	CD8+ cell activation to a major mastocytoma rejection antigen, P815AB: requirement for tumâ^' or helper peptides in priming for skin test reactivity to a P815AB-related peptide. European Journal of Immunology, 1995, 25, 2797-2802.	2.9	30
135	LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology, 2015, 220, 315-321.	1.9	30
136	T helper cell dichotomy toCandida albicans: Implications for pathology, therapy, and vaccine design. Immunologic Research, 1995, 14, 148-162.	2.9	29
137	Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology, 2016, 102, 59-71.	4.1	29
138	Augmentation of natural killer activity by pyran copolymer in mice. International Journal of Cancer, 1979, 24, 656-661.	5.1	28
139	The Proteasome Inhibitor Bortezomib Controls Indoleamine 2,3-Dioxygenase 1 Breakdown and Restores Immune Regulation in Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 428.	4.8	28
140	NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle, 2014, 13, 1902-1911.	2.6	27
141	Neutrophils and the adaptive immune response to Candida albicans. Research in Immunology, 1996, 147, 512-518.	0.9	26
142	Pharmacologic Induction of Endotoxin Tolerance in Dendritic Cells by L-Kynurenine. Frontiers in Immunology, 2020, 11, 292.	4.8	26
143	Drug-mediated increase of tumor immunogenicity in vivo for a new approach to experimental cancer immunotherapy. Cancer Research, 1981, 41, 681-7.	0.9	26
144	Combined effects of antineoplastic agents and anti-lymphoma allograft reactions. European Journal of Cancer, 1980, 16, 23-33.	0.9	25

9

#	Article	IF	CITATIONS
145	Identification and immunogenic properties of an 80-kDa surface antigen on a drug-treated tumor variant: Relationship to MuLV gp70. European Journal of Immunology, 1990, 20, 629-636.	2.9	25
146	Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opinion on Drug Discovery, 2019, 14, 1199-1212.	5.0	25
147	Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 4644.	4.1	25
148	Humoral response against murine lymphoma cells xenogenized by drug treatmentin vivo. International Journal of Cancer, 1985, 36, 225-231.	5.1	24
149	Delayed-type hypersensitivity to tumor antigens co-expressed with immunogenic determinants induced by xenogenization. International Journal of Cancer, 1989, 43, 279-284.	5.1	24
150	CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-Ig. Microbes and Infection, 2005, 7, 1040-1048.	1.9	24
151	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	4.5	24
152	Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 ⁺ Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International Journal of Tryptophan Research, 2010, 3, IJTR.S3971.	2.3	23
153	HOPS/TMUB1 retains p53 in the cytoplasm and sustains p53â€dependent mitochondrial apoptosis. EMBO Reports, 2020, 21, e48073.	4.5	23
154	Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. European Journal of Immunology, 1991, 21, 1567-1570.	2.9	22
155	IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine, 2006, 34, 161-169.	3.2	22
156	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.8	22
157	GROWTH AND REJECTION PATTERNS OF MURINE LYMPHOMA CELLS ANTIGENICALLY ALTERED FOLLOWING DRUG TREATMENT IN VIVO. Transplantation, 1978, 25, 63-68.	1.0	21
158	Involvement of host macrophages in the immunoadjuvant activity of amphotericin B in a mouse fungal infection model Journal of Antibiotics, 1986, 39, 846-855.	2.0	21
159	CD40 Ligand and CTLA-4 Are Reciprocally Regulated in the Th1 Cell Proliferative Response Sustained by CD8+ Dendritic Cells. Journal of Immunology, 2002, 169, 1182-1188.	0.8	21
160	Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to <i>Aspergillus</i> . Medical Mycology, 2009, 47, S154-S161.	0.7	21
161	Chronic granulomatous disease. Cellular and Molecular Life Sciences, 2009, 66, 553-558.	5.4	21
162	Biological role of Th cell subsets in candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-37.	1.7	21

#	Article	IF	CITATIONS
163	Adriamycin-induced antitumor response in lethally irradiated mice. Immunopharmacology, 1979, 1, 211-220.	2.0	20
164	DUAL EFFECT OF IL-4 ON RESISTANCE TO SYSTEMIC GRAM-NEGATIVE INFECTION AND PRODUCTION OF TNF-α. Cytokine, 2000, 12, 417-421.	3.2	20
165	Immune Regulation and Tolerance to Fungi in the Lungs and Skin. Chemical Immunology and Allergy, 2008, 94, 124-137.	1.7	20
166	Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem, 2018, 13, 270-279.	3.2	20
167	Receptors and Pathways in Innate Antifungal Immunity. Advances in Experimental Medicine and Biology, 2007, 590, 209-221.	1.6	20
168	Tryptophan Catabolism in Nonobese Diabetic Mice. Advances in Experimental Medicine and Biology, 2003, 527, 47-54.	1.6	20
169	Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Critical Reviews in Immunology, 2002, 22, 373-90.	0.5	20
170	Systemic adoptive immunotherapy of a highly immunogenic murine lymphoma growing in the brain. International Journal of Cancer, 1983, 31, 477-482.	5.1	19
171	Adoptive immunotherapy of intracerebral murine lymphomas: Role of different lymphoid populations. International Journal of Cancer, 1985, 35, 659-665.	5.1	19
172	Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discovery, 2020, 6, 49.	4.7	19
173	Antibacterial resistance induced by recombinant interleukin 1 in myelosuppressed mice: Effect of treatment schedule and correlation with colony-stimulating activity in the bloodstream. Cellular Immunology, 1990, 128, 250-260.	3.0	18
174	Novel mutations in the <i>WFS1</i> gene are associated with Wolfram syndrome and systemic inflammation. Human Molecular Genetics, 2021, 30, 265-276.	2.9	18
175	Long-term depression of two primary immune responses induced by a single dose of 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC). Experientia, 1978, 34, 799-800.	1.2	17
176	Inhibition of murine lymphoma growth by adoptive transfer of lymphocytes sensitized to a xenogenized tumor variant. International Journal of Cancer, 1987, 40, 7-11.	5.1	17
177	Intrasplenic immunization for the induction of humoral and cell-mediated immunity to nitrocellulose-bound antigen. Journal of Immunological Methods, 1991, 137, 9-15.	1.4	17
178	CTLA-4, T helper lymphocytes and dendritic cells: an internal perspective of T-cell homeostasis. Trends in Molecular Medicine, 2003, 9, 133-135.	6.7	17
179	Tolerance to staphylococcal enterotoxin B initiated Th1 cell differentiation in mice infected with Candida albicans. Infection and Immunity, 1994, 62, 4047-4053.	2.2	17
180	Chemical xenogenization of murine lymphoma cells with triazene derivatives: Immunotoxicological studies. Cancer Immunology, Immunotherapy, 1984, 17, 213-7.	4.2	16

#	Article	IF	CITATIONS
181	Induction of tumor suppression and delayed-type footpad reaction by transfer of lymphocytes sensitized to a xenogenized tumor variant. International Journal of Cancer, 1988, 42, 71-75.	5.1	16
182	Cell-mediated immunity to chemically xenogenized tumors I. Inhibition by specific antisera and H-2 association of the novel antigens. Cancer Immunology, Immunotherapy, 1988, 26, 48-54.	4.2	16
183	Immunogenicity of tumor peptides: importance of peptide length and stability of peptide/MHC class II complex. Cancer Immunology, Immunotherapy, 1999, 48, 195-203.	4.2	16
184	The Immunosuppressive Activity of Proinflammatory Cytokines in Experimental Models Potential for Therapeutic Intervention in Autoimmunity. Inflammation and Allergy: Drug Targets, 2002, 1, 77-87.	3.1	16
185	Xenograft of Microencapsulated Sertoli Cells Reverses T1DM in NOD Mice by Inducing Neogenesis of Beta-Cells. Transplantation, 2010, 90, 1352-1357.	1.0	16
186	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	6.4	16
187	Enhancement of natural killer cell activity in mice by treatment with a thymic factor. Cancer Immunology, Immunotherapy, 1984, 17, 51-5.	4.2	15
188	Chemical xenogenization of tumor cells. Trends in Pharmacological Sciences, 1985, 6, 485-487.	8.7	15
189	Cell-mediated immunity to chemically xenogenized tumors. Cellular Immunology, 1988, 111, 365-378.	3.0	15
190	Evidence for tumor necrosis factor α as a mediator of the toxicity of a cyclooxygenase inhibitor in Gram-negative sepsis. European Journal of Pharmacology, 1996, 307, 191-199.	3.5	15
191	Growth Inhibition of Normal or Drug-Treated Lymphoma Cells in Lethally Irradiated Mice2. Journal of the National Cancer Institute, 1978, 60, 1083-1090.	6.3	14
192	Cellular mechanisms underlying the adjuvant activity ofCandida albicans in a mouse lymphoma model. International Journal of Cancer, 1982, 29, 483-488.	5.1	14
193	Dna methylating activity in murine lymphoma cells xenogenized by triazene derivatives. International Journal of Cancer, 1987, 39, 769-773.	5.1	14
194	AhR: Far more than an environmental sensor. Cell Cycle, 2014, 13, 2645-2646.	2.6	14
195	S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid–derived stem cells. European Journal of Pharmacology, 2018, 833, 173-182.	3.5	14
196	O 6-Methylguanine-DNA methyltransferase activity and induction of novel immunogenicity in murine tumor cells treated with methylating agents. Cancer Chemotherapy and Pharmacology, 1992, 29, 277-282.	2.3	13
197	Mechanisms of cell-mediated immunity in fungal infection. Medical Mycology, 1994, 32, 123-131.	0.7	13
198	Cell-mediated immunity to chemically xenogenized tumors—III. Generation of monoclonal antibodies interfering with reactivity to novel antigens. International Journal of Immunopharmacology, 1988, 10, 803-809.	1.1	12

#	Article	IF	CITATIONS
199	Accelerated Hematopoietic Recovery and Protective Effect of the Cyclooxygenase Inhibitor Indomethacin in Bacterial Infection of Neutropenic Mice. Cellular Immunology, 1993, 147, 314-352.	3.0	12
200	Multiple point mutations in an endogenous retroviral gene confer high immunogenicity on a drug-treated murine tumor. Journal of Immunology, 1995, 154, 4630-41.	0.8	12
201	Depression of Hepatic Biotransformations by Chemical Immunoadjuvants. Immunopharmacology and Immunotoxicology, 1981, 3, 251-264.	0.8	10
202	Lack of correlation between DNA-methylating activity and appearance of the immunogenic phenotype in clones of a murine lymphoma treated with mutagens. Cancer Immunology, Immunotherapy, 1989, 29, 139-43.	4.2	10
203	Interaction of 7-Alkoxycoumarins with the Aryl Hydrocarbon Receptor. Journal of Natural Products, 2017, 80, 1939-1943.	3.0	10
204	Disease Tolerance Mediated by Phosphorylated Indoleamine-2,3 Dioxygenase Confers Resistance to a Primary Fungal Pathogen. Frontiers in Immunology, 2017, 8, 1522.	4.8	9
205	<scp>IL</scp> â€35Ig–expressing dendritic cells induce tolerance via Arginase 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3757-3761.	3.6	9
206	Involvement of the Th1 subset of CD4+ T cells in acquired immunity to mouse infection with Trypanosoma equiperdum. Cellular Immunology, 1992, 143, 261-271.	3.0	8
207	Immunogenic tumor variants induced by drug treatment of the L5178Y lymphoma: Search for serologically defined antigens at the clonal level. International Journal of Cancer, 1992, 52, 372-377.	5.1	8
208	A retroviral peptide encoded by mutated env p15E gene is recognized by specific CD8+ T lymphocytes on drug-treated murine mastocytoma P815. International Journal of Immunopharmacology, 1996, 18, 563-576.	1.1	8
209	IL-12 INDUCES SDS-STABLE CLASS II αβ DIMERS IN MURINE DENDRITIC CELLS. Cytokine, 2000, 12, 401-404.	3.2	8
210	Immunopharmacology of pyran copolymer. Pharmacological Research Communications, 1978, 10, 489-501.	0.2	7
211	Changes in the tumorigenic and metastatic properties of murine melanoma cells treated with a triazene derivative. Clinical and Experimental Metastasis, 1989, 7, 329-341.	3.3	7
212	Cell-mediated immunity to chemically xenogenized tumors — IV. Production of lymphokine activity by, and in response to, highly immunogenic cells. International Journal of Immunopharmacology, 1989, 11, 537-542.	1.1	7
213	Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. Molecular BioSystems, 2015, 11, 1622-1632.	2.9	7
214	CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	7
215	T-cell subsets, IFN-Î ³ production and efferent specificity in anti-parental tumor immunity induced by mouse sensitization with xenogenized variant cells. International Journal of Cancer, 1990, 46, 653-657.	5.1	6
216	Immunogenic properties of retroviral protein p15e from drug-treated murine mastocytoma P815. International Journal of Cancer, 1993, 55, 344-350.	5.1	6

#	Article	IF	CITATIONS
217	Response from Romani et al.: Microbial virulence results from the interaction between host and microorganism. Trends in Microbiology, 2003, 11, 158-159.	7.7	6
218	Dendritic Cells and Interleukin 12 as Adjuvants for Tumor-Specific Vaccines. Advances in Experimental Medicine and Biology, 1997, 417, 579-582.	1.6	6
219	Cell-mediated immunity to chemically xenogenized tumors. V. Failure of novel antigens to increase the frequency of tumor-specific cytotoxic T cells. International Journal of Immunopharmacology, 1990, 12, 743-749.	1.1	5
220	Antigen-specific cytolysis of infected cells in murine candidiasis. European Journal of Epidemiology, 1992, 8, 368-376.	5.7	5
221	Circulating Levels of IL-10 Are Critically Related to Growth and Rejection Patterns of Murine Mastocytoma Cells. Cellular Immunology, 1997, 181, 109-119.	3.0	5
222	Antilymphoma graft responses in the mouse brain: A study oft-dependent functions. International Journal of Cancer, 1983, 31, 769-774.	5.1	4
223	Anticancer drug toxicity via cytokine production: the hydroxyurea paradigm. Toxicology Letters, 1995, 82-83, 167-171.	0.8	4
224	Murine leukemia growth inhibition or enhancement following immunization with tumor cells antigenically altered by drug treatment. Pharmacological Research Communications, 1977, 9, 349-358.	0.2	3
225	Modulation of colony-stimulating activity by interleukin 1 mice: opposing effects of combined treatment with indomethacin of prostaglandin E2. International Journal of Immunopharmacology, 1992, 14, 655-659.	1.1	3
226	Endogenous Retroviral gp70 Genes of the Murine Lymphoma L5178Y: Analysis of Restriction Fragment Polymorphism upon Induction of Drug-Mediated Immunogenicity. Viral Immunology, 1994, 7, 155-167.	1.3	3
227	On the Non-Redundant Roles ofââ,¬â€°TDO2 and IDO1. Frontiers in Immunology, 2014, 5, 522.	4.8	3
228	Xenogenization of Experimental Tumors by Triazene Derivatives. , 1990, , 79-89.		3
229	TLRs and tryptophan metabolism at the crossroad of immunoregulatory pathways. Immunometabolism, 2014, 1, .	6.0	3
230	Modulation of circulating colony-stimulating activity in mice: Combined effects of IL-1 and bacterial or indomethacin treatment. International Journal of Immunopharmacology, 1991, 13, 955-960.	1.1	2
231	Experimental Studies of Immunotoxicity of a Photosensitizing Agent (Photofrin II) in Mice. Journal of Chemotherapy, 1992, 4, 290-296.	1.5	2
232	Tumor-specific L3T4+ and Lyt-2+ lymphocytes in mice primed to mutagenized cell variants. International Journal of Immunopharmacology, 1992, 14, 915-921.	1.1	2
233	Reply to â€~F508del-CFTR is not corrected by thymosin α1'. Nature Medicine, 2018, 24, 891-893.	30.7	2
234	Reply to Han et al.: On track for an IDO1-based personalized therapy in autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24037-24038.	7.1	2

#	Article	IF	CITATIONS
235	T cell fat catabolism: A novel target for kynurenine?. EBioMedicine, 2022, 75, 103779.	6.1	2
236	Generation of monoclonal antibodies to a chemically xenogenized murine lymphoma. Pharmacological Research Communications, 1988, 20, 443-444.	0.2	1
237	In vitro evaluation of the immunoactive properties of potentially useful immunopotentiators. Pharmacological Research Communications, 1988, 20, 64.	0.2	1
238	Immune recognition of drug-induced tumor antigens: A study with a nonimmunogenic, revertant clone. Pharmacological Research, 1992, 26, 186-187.	7.1	1
239	Antagonistic effect of IL-2 on DTIC-induced impairment of tumor-specific cell-mediated immunity in vitro. Pharmacological Research, 1992, 26, 106-107.	7.1	1
240	Cytokines and tumours: problems and perspectives. Pharmacological Research, 1994, 29, 111-119.	7.1	1
241	Romani & Puccetti reply. Nature, 2014, 514, E18-E18.	27.8	1
242	Indoleamine 2,3-Dioxygenase and Peripheral Tolerance to Exogenous Factor VIII: A Multi-Centre Pilot Study. Blood, 2011, 118, 26-26.	1.4	1
243	CTLA-4-immunoglobulin and indoleamine 2,3-dioxygenase in dominant tolerance. , 2008, , 87-106.		1
244	DNA methylating activity in murine lymphoma cells treated with xenogenizing chemicals. Cancer Detection and Prevention Supplement: Official Publication of the International Society for Preventive Oncology, Inc, 1987, 1, 311-6.	0.0	1
245	Drug-mediated changes of tumour cell immunogenicity and antigenicity. International Journal of Tissue Reactions, 1982, 4, 189-99.	0.2	1
246	Combined effects of chemotherapy and host antitumor response in a murine histocompatible lymphoma model. International Journal of Immunopharmacology, 1984, 6, 217-222.	1.1	0
247	Regulation of tumor antigen expression by drugs acting as mutagens and/or gene activators. Pharmacological Research Communications, 1988, 20, 441-442.	0.2	0
248	Pharmacologic manipulation of tumor cell immunogenicity (xenogenization) as a means of inducing their rejection in experimental immunotherapy. Pharmacological Research Communications, 1988, 20, 318.	0.2	0
249	Toward characterization of novel drug-induced antigens. Pharmacological Research, 1989, 21, 663-664.	7.1	0
250	Search for cytogenetic markers in chemically xenogenized murine lymphomas. Pharmacological Research, 1989, 21, 667-668.	7.1	0
251	Molecular and genomic aspects of xenogenizing-alkylating drugs. Pharmacological Research, 1992, 26, 24-25.	7.1	0
252	Cell-mediated immunity to chemically xenogenized tumors—VI. The effect of cell treatment with retroviral env antisense oligonucleotides. International Journal of Immunopharmacology, 1993, 15, 567-572.	1.1	0

#	Article	IF	CITATIONS
253	Response to von Bubnoff et al.: Still new perspectives on IDO function?. Trends in Immunology, 2003, 24, 297.	6.8	0
254	Pathogenic Inflammation in Fungal Infections: the Contribution of the Th17 Pathway. International Journal of Infectious Diseases, 2008, 12, S1.	3.3	0
255	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.8	0
256	XENOGRAFT OF MICROENCAPSULATED SERTOLI CELLS ALONE CURES NOD MICE WITH SPONTANEOUS AUTOIMMUNE DIABETES. Transplantation, 2010, 90, 329.	1.0	0
257	Modulating Effects of Thymic Factors on Natural Cell-Mediated Reactivities of Natural and Cyclophosphamide-Treated Mice. , 1984, , 139-144.		0
258	Amphotericin-B Induced Immunomodulation of Resistance Against Candida Albicans Infection. , 1987, , 91-99.		0
259	Combination Therapies with Cytokines and Anti-Cytokines in Murine Opportunistic Infections. , 1992, , 97-104.		0
260	Cancer Immunotherapy: Preclinical Studies with Triazene Compounds. , 1992, , 293-301.		0
261	Anti-Cytokine Therapy of Murine Candidiasis. , 1993, , 195-200.		0
262	Chemical Xenogenization of Experimental Tumors by Antineoplastic Drugs. , 1993, , 147-161.		0
263	Installing FVIII-Specific Tolerance in Hemophilia Via Engagement of the Aryl Hydrocarbon Receptor By Tryptophan Derivatives. Blood, 2016, 128, 2563-2563.	1.4	0
264	Prospective Study of the Immunological Mechanisms of Immune Tolerance Induction in Severe Haemophilia a Patients with Inhibitors: Preliminary Analysis of a Multi-Center Longitudinal Study. Blood, 2018, 132, 3781-3781.	1.4	0