
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8010390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Fuel Cells, Concept, and Applications. , 2022, , 875-909.		Ο
2	Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 2022, 520, 230875.	7.8	30
3	Integration of Cost-Efficient Carbon Electrodes into the Development of Microbial Fuel Cells. Carbon Materials, 2022, , 43-57.	1.2	1
4	Development of a Bio-Digital Interface Powered by Microbial Fuel Cells. Sustainability, 2022, 14, 1735.	3.2	3
5	Microbial fuel cell compared to a chemostat. Chemosphere, 2022, 296, 133967.	8.2	11
6	Phototrophic microbial fuel cells. , 2022, , 699-727.		0
7	Prevention and removal of membrane and separator biofouling in bioelectrochemical systems: a comprehensive review. IScience, 2022, 25, 104510.	4.1	16
8	Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. IScience, 2021, 24, 102805.	4.1	6
9	Electronic faucet powered by low cost ceramic microbial fuel cells treating urine. Journal of Power Sources, 2021, 506, 230004.	7.8	6
10	Effect of simple interventions on the performance of a miniature MFC fed with fresh urine. International Journal of Hydrogen Energy, 2021, 46, 33594-33600.	7.1	5
11	Microbial fuel cells and their electrified biofilms. Biofilm, 2021, 3, 100057.	3.8	52
12	Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power. Sustainable Energy Technologies and Assessments, 2021, 48, 101618.	2.7	8
13	Microbial Fuel Cell Based Thermosensor for Robotic Applications. Frontiers in Robotics and Al, 2021, 8, 558953.	3.2	4
14	Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 2020, 446, 227328.	7.8	53
15	Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 25240-25248.	7.1	12
16	From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights. Applied Energy, 2020, 277, 115514.	10.1	42
17	Developing 3D-Printable Cathode Electrode for Monolithically Printed Microbial Fuel Cells (MFCs). Molecules, 2020, 25, 3635.	3.8	17
18	Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms, 2020, 8, 1921.	3.6	18

#	Article	IF	CITATIONS
19	Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochimica Acta, 2020, 353, 136530.	5.2	10
20	Scalability and stacking of self-stratifying microbial fuel cells treating urine. Bioelectrochemistry, 2020, 133, 107491.	4.6	31
21	Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry, 2020, 134, 107500.	4.6	23
22	Urine in Bioelectrochemical Systems: An Overall Review. ChemElectroChem, 2020, 7, 1312-1331.	3.4	43
23	Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 2020, 262, 114475.	10.1	54
24	Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 2020, 133, 107459.	4.6	41
25	Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species. Scientific Reports, 2020, 10, 5533.	3.3	17
26	A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochimica Acta, 2020, 353, 136388.	5.2	20
27	Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 2020, 258, 109992.	7.8	39
28	Discovery, development and exploitation of steady-state biofilms. Journal of Breath Research, 2020, 14, 044001.	3.0	4
29	Microbial Fuel Cells, Concept, and Applications. , 2020, , 1-35.		Ο
30	Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. International Journal of Hydrogen Energy, 2019, 44, 4524-4532.	7.1	40
31	Multiâ€functional microbial fuel cells for power, treatment and electroâ€osmotic purification of urine. Journal of Chemical Technology and Biotechnology, 2019, 94, 2098-2106.	3.2	21
32	Removal of Hepatitis B virus surface HBsAg and core HBcAg antigens using microbial fuel cells producing electricity from human urine. Scientific Reports, 2019, 9, 11787.	3.3	11
33	Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 2019, 3, 2546-2560.	4.9	44
34	Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 2019, 436, 226832.	7.8	41
35	Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 2019, 127, 68-75.	4.6	22
36	Living Architecture: Toward Energy Generating Buildings Powered by Microbial Fuel Cells. Frontiers in Energy Research, 2019, 7, .	2.3	11

#	Article	IF	CITATIONS
37	Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 2019, 44, 4450-4462.	7.1	19
38	Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 2019, 429, 30-37.	7.8	27
39	Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochimica Acta, 2019, 307, 241-252.	5.2	38
40	Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 587-599.	3.0	12
41	A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards "Living―Bricks. Energies, 2019, 12, 4071.	3.1	23
42	Increased power generation in supercapacitive microbial fuel cell stack using Fe N C cathode catalyst. Journal of Power Sources, 2019, 412, 416-424.	7.8	42
43	Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode. Scientific Reports, 2018, 8, 3281.	3.3	55
44	Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell. Bioelectrochemistry, 2018, 123, 119-124.	4.6	26
45	Investigation of ceramic MFC stacks for urine energy extraction. Bioelectrochemistry, 2018, 123, 19-25.	4.6	46
46	Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy, 2018, 144, 1073-1079.	8.8	71
47	Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 2018, 11, 2377.	3.1	17
48	Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 2018, 11, 78-83.	4.8	146
49	Miniaturized Ceramic-Based Microbial Fuel Cell for Efficient Power Generation From Urine and Stack Development. Frontiers in Energy Research, 2018, 6, 84.	2.3	53
50	PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 2018, 392, 150-158.	7.8	106
51	Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective. Journal of Power Sources, 2018, 400, 392-401.	7.8	58
52	Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 2017, 192, 575-581.	10.1	102
53	Self-powered, autonomous Biological Oxygen Demand biosensor for online water quality monitoring. Sensors and Actuators B: Chemical, 2017, 244, 815-822.	7.8	96
54	3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 2017, 19, 94-101.	2.7	57

#	Article	IF	CITATIONS
55	Autonomous Energy Harvesting and Prevention of Cell Reversal in MFC Stacks. Journal of the Electrochemical Society, 2017, 164, H3047-H3051.	2.9	30
56	Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up. Journal of Power Sources, 2017, 356, 365-370.	7.8	55
57	Cellular non-linear network model of microbial fuel cell. BioSystems, 2017, 156-157, 53-62.	2.0	13
58	Electricity and catholyte production from ceramic MFCs treating urine. International Journal of Hydrogen Energy, 2017, 42, 1791-1799.	7.1	50
59	Gelatin as a promising printable feedstock for microbial fuel cells (MFC). International Journal of Hydrogen Energy, 2017, 42, 1783-1790.	7.1	10
60	Enhanced MFC power production and struvite recovery by the addition of sea salts to urine. Water Research, 2017, 109, 46-53.	11.3	82
61	Urine disinfection and in situ pathogen killing using a Microbial Fuel Cell cascade system. PLoS ONE, 2017, 12, e0176475.	2.5	44
62	Towards implementation of cellular automata in Microbial Fuel Cells. PLoS ONE, 2017, 12, e0177528.	2.5	13
63	Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells. Catalysts, 2016, 6, 127.	3.5	58
64	Comprehensive Study on Ceramic Membranes for Low ost Microbial Fuel Cells. ChemSusChem, 2016, 9, 88-96.	6.8	111
65	Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration. Bioresource Technology, 2016, 215, 285-289.	9.6	16
66	A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 2016, 215, 296-303.	9.6	142
67	Analysis of microbial fuel cell operation in acidic conditions using the flocculating agent ferric chloride. Journal of Chemical Technology and Biotechnology, 2016, 91, 138-143.	3.2	9
68	Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser. Scientific Reports, 2016, 6, 25571.	3.3	69
69	Regeneration of the power performance of cathodes affected by biofouling. Applied Energy, 2016, 173, 431-437.	10.1	56
70	Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column. Biotechnology for Biofuels, 2016, 9, 93.	6.2	67
71	Electricity generation and struvite recovery from human urine using microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2016, 91, 647-654.	3.2	80
72	Slime Mould Controller for Microbial Fuel Cells. Emergence, Complexity and Computation, 2016, , 285-298.	0.3	0

#	Article	IF	CITATIONS
73	From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density. Sustainable Energy Technologies and Assessments, 2016, 14, 74-79.	2.7	52
74	Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research and Technology, 2016, 2, 336-343.	2.4	147
75	Fade to Green: A Biodegradable Stack of Microbial Fuel Cells. ChemSusChem, 2015, 8, 2705-2712.	6.8	25
76	Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs. Bioelectrochemistry, 2015, 104, 58-64.	4.6	105
77	Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors. Sensing and Bio-Sensing Research, 2015, 6, 43-50.	4.2	30
78	A novel small scale Microbial Fuel Cell design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 2015, 40, 4263-4268.	7.1	61
79	Cathode materials for ceramic based microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 2015, 40, 14706-14715.	7.1	53
80	Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 2015, 82, 87-93.	5.7	176
81	Urine-activated origami microbial fuel cells to signal proof of life. Journal of Materials Chemistry A, 2015, 3, 7058-7065.	10.3	59
82	Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture. Water Research, 2015, 86, 108-115.	11.3	42
83	Ceramic MFCs with internal cathode producing sufficient power for practical applications. International Journal of Hydrogen Energy, 2015, 40, 14627-14631.	7.1	49
84	Physarum polycephalum: Towards a biological controller. BioSystems, 2015, 127, 42-46.	2.0	7
85	Highâ€Performance, Totally Flexible, Tubular Microbial Fuel Cell. ChemElectroChem, 2014, 1, 1994-1999.	3.4	21
86	Micro-porous layer (MPL)-based anode for microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21811-21818.	7.1	40
87	Water formation at the cathode and sodium recovery using Microbial Fuel Cells (MFCs). Sustainable Energy Technologies and Assessments, 2014, 7, 187-194.	2.7	60
88	Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks. Journal of Power Sources, 2014, 272, 34-38.	7.8	36
89	Waste to real energy: the first MFC powered mobile phone. Physical Chemistry Chemical Physics, 2013, 15, 15312.	2.8	158
90	Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 2013, 36, 1913-1921.	3.4	71

#	Article	IF	CITATIONS
91	The first self-sustainable microbial fuel cell stack. Physical Chemistry Chemical Physics, 2013, 15, 2278.	2.8	80
92	MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresource Technology, 2013, 134, 158-165.	9.6	98
93	Review: <i>In vitro</i> biofilm models for studying oral malodour. Flavour and Fragrance Journal, 2013, 28, 212-222.	2.6	9
94	Photosynthetic cathodes for Microbial Fuel Cells. International Journal of Hydrogen Energy, 2013, 38, 11559-11564.	7.1	72
95	Miniature microbial fuel cells and stacks for urine utilisation. International Journal of Hydrogen Energy, 2013, 38, 492-496.	7.1	86
96	Urine utilisation by microbial fuel cells; energy fuel for the future. Physical Chemistry Chemical Physics, 2012, 14, 94-98.	2.8	205
97	Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells. Bioresource Technology, 2012, 118, 615-618.	9.6	49
98	Microbial volatile compounds in health and disease conditions. Journal of Breath Research, 2012, 6, 024001.	3.0	96
99	Microbial Fuel Cells for Robotics: Energy Autonomy through Artificial Symbiosis. ChemSusChem, 2012, 5, 1020-1026.	6.8	50
100	Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresource Technology, 2012, 110, 245-250.	9.6	56
101	The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry, 2011, 81, 22-27.	4.6	104
102	Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology, 2010, 101, 3520-3525.	9.6	192
103	Small Scale Microbial Fuel Cells and Different Ways of Reporting Output. ECS Transactions, 2010, 28, 1-9.	0.5	20
104	Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system. Journal of Breath Research, 2010, 4, 017107.	3.0	11
105	Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 2009, 44, 112-119.	3.2	172
106	Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 2008, 32, 1228-1240.	4.5	293
107	Modelling oral malodour from a tongue biofilm. Journal of Breath Research, 2008, 2, 017003.	3.0	12
108	Artificial gills for robots: MFC behaviour in water. Bioinspiration and Biomimetics, 2007, 2, S83-S93.	2.9	26

#	Article	IF	CITATIONS
109	A clinical study on the antimicrobial and breath-freshening effect of zinc-containing lozenge formulations. Microbial Ecology in Health and Disease, 2007, 19, 164-170.	3.5	3
110	Energetically autonomous robots: Food for thought. Autonomous Robots, 2006, 21, 187-198.	4.8	122
111	Energy accumulation and improved performance in microbial fuel cells. Journal of Power Sources, 2005, 145, 253-256.	7.8	75
112	EcoBot-II: An Artificial Agent with a Natural Metabolism. International Journal of Advanced Robotic Systems, 2005, 2, 31.	2.1	45
113	Assessing the relationship between concentrations of malodor compounds and odor scores from judges. Journal of the American Dental Association, 2005, 136, 749-757.	1.5	60
114	Artificial Metabolism: Towards True Energetic Autonomy in Artificial Life. Lecture Notes in Computer Science, 2003, , 792-799.	1.3	29
115	Tongue Microbiota and Malodour. Microbial Ecology in Health and Disease, 1999, 11, 226-233.	3.5	14