Brigitte Gontero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009898/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction in Phosphoribulokinase Amount and Re-Routing Metabolism in Chlamydomonas reinhardtii CP12 Mutants. International Journal of Molecular Sciences, 2022, 23, 2710.	4.1	7
2	Bioaccessibility of essential lipophilic nutrients in a chloroplast-rich fraction (CRF) from agricultural green waste during simulated human gastrointestinal tract digestion. Food and Function, 2022, 13, 5365-5380.	4.6	1
3	A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell Communication and Signaling, 2021, 19, 38.	6.5	9
4	ppGpp influences protein protection, growth and photosynthesis in <i>Phaeodactylum tricornutum</i> . New Phytologist, 2021, 230, 1517-1532.	7.3	14
5	Flexibility of Oxidized and Reduced States of the Chloroplast Regulatory Protein CP12 in Isolation and in Cell Extracts. Biomolecules, 2021, 11, 701.	4.0	4
6	Quantitative monitoring of galactolipid hydrolysis by pancreatic lipase-related protein 2 using thin layer chromatography and thymol-sulfuric acid derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1173, 122674.	2.3	5
7	Inorganic carbon uptake in a freshwater diatom, <i>Asterionella formosa</i> (Bacillariophyceae): from ecology to genomics. Phycologia, 2021, 60, 427-438.	1.4	6
8	Structural Contour Map of the lota Carbonic Anhydrase from the Diatom Thalassiosira pseudonana Using a Multiprong Approach. International Journal of Molecular Sciences, 2021, 22, 8723.	4.1	6
9	Characterization of all the lipolytic activities in pancreatin and comparison with porcine and human pancreatic juices. Biochimie, 2020, 169, 106-120.	2.6	23
10	Targeting TOR signaling for enhanced lipid productivity in algae. Biochimie, 2020, 169, 12-17.	2.6	10
11	Storage Compound Accumulation in Diatoms as Response to Elevated CO2 Concentration. Biology, 2020, 9, 5.	2.8	24
12	The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food and Function, 2020, 11, 6710-6744.	4.6	23
13	Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. Frontiers in Plant Science, 2020, 11, 1033.	3.6	19
14	External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm. Journal of Experimental Botany, 2020, 71, 6004-6014.	4.8	18
15	Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides. Annals of Botany, 2020, 125, 869-879.	2.9	21
16	Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. International Journal of Molecular Sciences, 2020, 21, 2922.	4.1	51
17	Orchestration of algal metabolism by protein disorder. Archives of Biochemistry and Biophysics, 2019, 672, 108070.	3.0	13
18	Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. Small, 2019, 15, e1900860.	10.0	42

#	Article	IF	CITATIONS
19	A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME Journal, 2019, 13, 2094-2106.	9.8	165
20	<i>In vitro</i> digestion of galactolipids from chloroplast-rich fraction (CRF) of postharvest, pea vine field residue (haulm) and spinach leaves. Food and Function, 2019, 10, 7806-7817.	4.6	14
21	RSH enzyme diversity for (p)ppGpp metabolism in Phaeodactylum tricornutum and other diatoms. Scientific Reports, 2019, 9, 17682.	3.3	15
22	Cryptic Disorder Out of Disorder: Encounter between Conditionally Disordered CP12 and Glyceraldehyde-3-Phosphate Dehydrogenase. Journal of Molecular Biology, 2018, 430, 1218-1234.	4.2	19
23	Exploring intrinsically disordered proteins in Chlamydomonas reinhardtii. Scientific Reports, 2018, 8, 6805.	3.3	25
24	Trade-offs and Synergies in the Structural and Functional Characteristics of Leaves Photosynthesizing in Aquatic Environments. Advances in Photosynthesis and Respiration, 2018, , 307-343.	1.0	14
25	Exploring the microbiome of the "star―freshwater diatom <i>Asterionella formosa</i> in a laboratory context. Environmental Microbiology, 2018, 20, 3601-3615.	3.8	6
26	Different CO2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides. Photosynthesis Research, 2018, 138, 219-232.	2.9	15
27	Interaction between adenylate kinase 3 and glyceraldehydeâ€3â€phosphate dehydrogenase from Chlamydomonas reinhardtii. FEBS Journal, 2018, 285, 2495-2503.	4.7	13
28	The effect of chronic silver nanoparticles on aquatic system in microcosms. Environmental Pollution, 2017, 223, 395-402.	7.5	50
29	Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach. Scientific Reports, 2017, 7, 42333.	3.3	36
30	Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Journal of Experimental Botany, 2017, 68, 3925-3935.	4.8	35
31	Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. Journal of Experimental Botany, 2017, 68, 3985-3995.	4.8	33
32	Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology, 2017, 11, 157-167.	3.0	112
33	Regulation of the Calvin–Benson–Bassham cycle in the enigmatic diatoms: biochemical and evolutionary variations on an original theme. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160401.	4.0	38
34	Diatom teratologies as biomarkers of contamination: Are all deformities ecologically meaningful?. Ecological Indicators, 2017, 82, 539-550.	6.3	58
35	Ecological imperatives for aquatic CO2-concentrating mechanisms. Journal of Experimental Botany, 2017, 68, 3797-3814.	4.8	72
36	The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime. Algal Research, 2017, 26, 265-274.	4.6	30

#	Article	IF	CITATIONS
37	The intriguing CP12â€like tail of adenylate kinase 3 from <i>Chlamydomonas reinhardtii</i> . FEBS Journal, 2016, 283, 3389-3407.	4.7	10
38	Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state. Biochemical and Biophysical Research Communications, 2016, 477, 20-26.	2.1	14
39	Redox regulation of ATP sulfurylase in microalgae. Biochemical and Biophysical Research Communications, 2016, 478, 1555-1562.	2.1	14
40	The nature of the <scp>CO</scp> ₂ oncentrating mechanisms in a marine diatom, <i>Thalassiosira pseudonana</i> . New Phytologist, 2016, 209, 1417-1427.	7.3	60
41	Fairy ââ,¬Å"tailsââ,¬Â• flexibility and function of intrinsically disordered extensions in the photosynthetic world. Frontiers in Molecular Biosciences, 2015, 2, 23.	3.5	29
42	Phosphoribulokinase from Chlamydomonas reinhardtii: a Benson–Calvin cycle enzyme enslaved to its cysteine residues. Molecular BioSystems, 2015, 11, 1134-1145.	2.9	26
43	The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochemical and Biophysical Research Communications, 2015, 463, 1305-1310.	2.1	33
44	Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. Journal of Lipid Research, 2015, 56, 1123-1133.	4.2	22
45	FRET analysis of CP12 structural interplay by GAPDH and PRK. Biochemical and Biophysical Research Communications, 2015, 458, 488-493.	2.1	13
46	Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Frontiers in Plant Science, 2014, 5, 597.	3.6	52
47	Conformational modulation and hydrodynamic radii of <scp>CP</scp> 12 protein and its complexes probed by fluorescence correlation spectroscopy. FEBS Journal, 2014, 281, 3206-3217.	4.7	14
48	CP12-mediated protection of Calvin–Benson cycle enzymes from oxidative stress. Biochimie, 2014, 97, 228-237.	2.6	55
49	Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynthesis Research, 2014, 121, 285-297.	2.9	64
50	Glyceraldehydeâ€3â€phosphate dehydrogenase is regulated by ferredoxinâ€ <scp>NADP</scp> reductase in the diatom <i><scp>A</scp>sterionella formosa</i> . New Phytologist, 2014, 203, 414-423.	7.3	32
51	Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie, 2014, 101, 21-30.	2.6	26
52	Regulation of photosynthetic carbon metabolism in aquatic and terrestrial organisms by Rubisco activase, redox-modulation and CP12. Aquatic Botany, 2014, 118, 14-23.	1.6	20
53	Exploration of CP12 conformational changes and of quaternary structural properties using electrospray ionization traveling wave ion mobility mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 179-186.	1.5	14
54	Dynamics of the intrinsically disordered protein CP12 in its association with GAPDH in the green alga Chlamydomonas reinhardtii: a fuzzy complex. Molecular BioSystems, 2013, 9, 2869.	2.9	26

#	Article	IF	CITATIONS
55	Enlarging the Panoply of Site-Directed Spin Labeling Electron Paramagnetic Resonance (SDSL-EPR): Sensitive and Selective Spin-Labeling of Tyrosine Using an Isoindoline-Based Nitroxide. Bioconjugate Chemistry, 2013, 24, 1110-1117.	3.6	39
56	Glutathionylation in the Photosynthetic Model Organism Chlamydomonas reinhardtii: A Proteomic Survey. Molecular and Cellular Proteomics, 2012, 11, M111.014142.	3.8	127
57	Regulation of glyceraldehyde-3-phosphate dehydrogenase in the eustigmatophyte <i>Pseudocharaciopsis ovalis</i> is intermediate between a chlorophyte and a diatom. European Journal of Phycology, 2012, 47, 207-215.	2.0	6
58	An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle. Biochemical Society Transactions, 2012, 40, 995-999.	3.4	60
59	CP12 residues involved in the formation and regulation of the glyceraldehyde-3-phosphate dehydrogenase–CP12–phosphoribulokinase complex in Chlamydomonas reinhardtii. Molecular BioSystems, 2012, 8, 2994.	2.9	28
60	Consequences of the presence of 24-epibrassinolide, on cultures of a diatom, Asterionella formosa. Biochimie, 2012, 94, 1213-1220.	2.6	18
61	Molecular Mechanism of NADPH-Glyceraldehyde-3-phosphate Dehydrogenase Regulation through the C-Terminus of CP12 in <i>Chlamydomonas reinhardtii</i> . Biochemistry, 2011, 50, 2881-2888.	2.5	22
62	Creating Order out of Disorder: Structural Imprint of GAPDH on CP12. Structure, 2011, 19, 1728-1729.	3.3	9
63	Tyrosineâ€Targeted Spin Labeling and EPR Spectroscopy: An Alternative Strategy for Studying Structural Transitions in Proteins. Angewandte Chemie - International Edition, 2011, 50, 9108-9111.	13.8	44
64	Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms. Photosynthesis Research, 2010, 103, 183-194.	2.9	57
65	Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. Journal of Experimental Botany, 2010, 61, 735-745.	4.8	58
66	CP12 from Chlamydomonas reinhardtii, a Permanent Specific "Chaperone-like―Protein of Glyceraldehyde-3-phosphate Dehydrogenase. Journal of Biological Chemistry, 2009, 284, 12735-12744.	3.4	38
67	A Proteomic Survey of Chlamydomonas reinhardtii Mitochondria Sheds New Light on the Metabolic Plasticity of the Organelle and on the Nature of the Â-Proteobacterial Mitochondrial Ancestor. Molecular Biology and Evolution, 2009, 26, 1533-1548.	8.9	172
68	Mapping of a copper-binding site on the small CP12 chloroplastic protein of Chlamydomonas reinhardtii using top-down mass spectrometry and site-directed mutagenesis. Biochemical Journal, 2009, 419, 75-86.	3.7	30
69	A New Function of GAPDH from Chlamydomonas reinhardtii: A Thiolâ	2.5	23
70	Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3â€phosphate dehydrogenase/CP12 complexâ€f–â€fpurification and kinetic characterization of this enzyme from <i>Chlamydomonas reinhardtii</i> . FEBS Journal, 2008, 275, 1248-1259.	4.7	39
71	SPECIFICITY AND FUNCTION OF GLYCERALDEHYDEâ€3â€PHOSPHATE DEHYDROGENASE IN A FRESHWATER DIATOM, <i>ASTERIONELLA FORMOSA</i> (BACILLARIOPHYCEAE) ¹ . Journal of Phycology, 2008, 44, 1455-1464.	2.3	23
72	Regulation of phosphoribulokinase and glyceraldehyde 3â€phosphate dehydrogenase in a freshwater diatom, <i>Asterionella formosa</i> ¹ . Journal of Phycology, 2007, 43, 1227-1235.	2.3	35

#	Article	IF	CITATIONS
73	Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii FEBS Journal, 2006, 273, 3358-3369.	4.7	38
74	Construction of a 3D model of CP12, a protein linker. Journal of Molecular Graphics and Modelling, 2006, 25, 186-195.	2.4	41
75	Mass spectrometric analysis of the interactions between CP12, a chloroplast protein, and metal ions: a possible regulatory role within a PRK/GAPDH/CP12 complex. Rapid Communications in Mass Spectrometry, 2005, 19, 3379-3388.	1.5	28
76	Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. Journal of Experimental Botany, 2004, 55, 1245-1254.	4.8	116
77	Involvement of two positively charged residues of Chlamydomonas reinhardtii glyceraldehyde-3-phosphate dehydrogenase in the assembly process of a bi-enzyme complex involved in CO2 assimilation. FEBS Journal, 2004, 271, 4737-4744.	0.2	20
78	Can the description of a cascade of biochemical events establish the basis of the integration of a biological function?. Biology of the Cell, 2004, 96, 675-676.	2.0	0
79	The Small Protein CP12:  A Protein Linker for Supramolecular Complex Assembly. Biochemistry, 2003, 42, 8163-8170.	2.5	110
80	Modulation, via Protein-Protein Interactions, of Glyceraldehyde-3-phosphate Dehydrogenase Activity through Redox Phosphoribulokinase Regulation. Journal of Biological Chemistry, 2003, 278, 12078-12084.	3.4	47
81	Striking Conformational Change Suspected within the Phosphoribulokinase Dimer Induced by Interaction with GAPDH. Journal of Biological Chemistry, 2002, 277, 6743-6749.	3.4	24
82	Thermodynamic Analysis of the Emergence of New Regulatory Properties in a Phosphoribulokinase-Glyceraldehyde 3-Phosphate Dehydrogenase Complex. Journal of Biological Chemistry, 2002, 277, 12697-12702.	3.4	20
83	Thioredoxin Activation of Phosphoribulokinase in a Bi-enzyme Complex from Chlamydomonas reinhardtii Chloroplasts. Journal of Biological Chemistry, 2000, 275, 9447-9451.	3.4	33
84	Memory and Imprinting in Multienzyme Complexes. Journal of Biological Chemistry, 1999, 274, 20879-20884.	3.4	30
85	Memory and Imprinting Effects in Multienzyme Complexes. I. Isolation, Dissociation, and Reassociation of a Phosphoribulokinase-Glyceraldehyde-3-Phosphate Dehydrogenase Complex from Chlamydomonas Reinhardtii Chloroplasts. FEBS Journal, 1997, 246, 78-84.	0.2	55
86	Information Transfer in Multienzyme Complexes. 1. Thermodynamics of Conformational Constraints and Memory Effects in the Bienzyme Glyceraldehyde-3-Phosphate-Dehydrogenase-Phosphoribulokinase Complex of Chlamydomonas reinhardtii Chloroplasts. FEBS Journal, 1997, 250, 286-295.	0.2	32
87	Information Transfer in Multienzyme Complexes. 2. The Role of Arg64 of Chlamydomonas reinhardtii Phosphoribulokinase in the Information Transfer Between Glyceraldehydes-3-Phosphate Dehydrogenase and Phosphoribulokinase. FEBS Journal, 1997, 250, 296-302.	0.2	31
88	A functional five-enzyme complex of chloroplasts involved in the Calvin cycle. FEBS Journal, 1988, 173, 437-443.	0.2	135
89	Analytical ultracentrifugation studies on chloroplastic fructose bisphosphatase. Plant Science, 1985, 38, 17-22.	3.6	7

90 Control of Carbon Fixation in Chloroplasts. , 0, , 187-218.

8