Matt Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Hydrogels by Mixing Dynamic Cross‣inkers: Enabling Cellâ€Instructive Hydrogels and Advanced Bioinks. Advanced Healthcare Materials, 2022, 11, e2101576.	7.6	34
2	Desymmetrization via Activated Esters Enables Rapid Synthesis of Multifunctional Benzene-1,3,5-tricarboxamides and Creation of Supramolecular Hydrogelators. Journal of the American Chemical Society, 2022, 144, 4057-4070.	13.7	13
3	Supramolecular Biomaterials in the Netherlands. Tissue Engineering - Part A, 2022, , .	3.1	3
4	Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial–Mesenchymal Transition in Culture. Advanced Science, 2022, 9, e2200543.	11.2	29
5	4D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles. Advanced Functional Materials, 2022, 32, .	14.9	10
6	Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4077-4101.	5.2	37
7	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	8.3	29
8	Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. International Journal of Molecular Sciences, 2021, 22, 3901.	4.1	27
9	Bioinspired Development of an In Vitro Engineered Fracture Callus for the Treatment of Critical Long Bone Defects. Advanced Functional Materials, 2021, 31, 2104159.	14.9	4
10	Thiol-ene cross-linked alginate hydrogel encapsulation modulates the extracellular matrix of kidney organoids by reducing abnormal type 1a1 collagen deposition. Biomaterials, 2021, 275, 120976.	11.4	36
11	An efficient and easily adjustable heating stage for digital light processing set-ups. Additive Manufacturing, 2021, 46, 102102.	3.0	8
12	A comparative study of mesenchymal stem cells cultured as cellâ€only aggregates and in encapsulated hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2021, , .	2.7	5
13	Biomimetic double network hydrogels: Combining dynamic and static crosslinks to enable biofabrication and control cellâ€matrix interactions. Journal of Polymer Science, 2021, 59, 2832-2843.	3.8	18
14	Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2020, 26, 11-22.	2.1	9
15	A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials, 2020, 257, 120230.	11.4	24
16	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	47.7	185
17	Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials, 2020, 10, 887.	4.1	30
18	Fabrication of a self-assembled honeycomb nanofibrous scaffold to guide endothelial morphogenesis. Biofabrication, 2020, 12, 045001.	7.1	10

Matt Baker

#	Article	IF	CITATIONS
19	Multivalency Enables Dynamic Supramolecular Host–Guest Hydrogel Formation. Biomacromolecules, 2020, 21, 2208-2217.	5.4	34
20	Dynamic Bioinks to Advance Bioprinting. Advanced Healthcare Materials, 2020, 9, e1901798.	7.6	141
21	Biomedical Uses of Sulfobetaine-Based Zwitterionic Materials. Organic Materials, 2020, 02, 342-357.	2.0	8
22	Self-assembly of electrospun nanofibers into gradient honeycomb structures. Materials and Design, 2019, 168, 107614.	7.0	35
23	Polymers for biology, medicine and sustainability. Polymer International, 2019, 68, 1219-1219.	3.1	1
24	Poly(caprolactone- <i>co</i> -trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomaterials Science, 2019, 7, 4984-4989.	5.4	30
25	Fragmentation of organic ions bearing fixed multiple charges observed in <scp>MALDI MS</scp> . Journal of Mass Spectrometry, 2018, 53, 39-47.	1.6	3
26	Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels, 2018, 4, 85.	4.5	68
27	Inherently chiral cone-calix[4]arenes via a subsequent upper rim ring-closing/opening methodology. Organic and Biomolecular Chemistry, 2018, 16, 7255-7264.	2.8	3
28	Thiol–Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting. Biomacromolecules, 2018, 19, 3390-3400.	5.4	146
29	Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange. Nature Communications, 2017, 8, 15420.	12.8	54
30	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	12.2	144
31	Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomaterialia, 2017, 59, 82-93.	8.3	93
32	Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomaterials Science and Engineering, 2016, 2, 1694-1709.	5.2	25
33	Selective and Sequential Aminolysis of Benzotrifuranone: Synergism of Electronic Effects and Ring Strain Gradient. Journal of Organic Chemistry, 2016, 81, 9279-9288.	3.2	12
34	Effect of H-Bonding on Order Amplification in the Growth of a Supramolecular Polymer in Water. Journal of the American Chemical Society, 2016, 138, 13985-13995.	13.7	88
35	Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water. ChemBioChem, 2016, 17, 207-213.	2.6	30
36	Supramolecular polymerisation in water; elucidating the role of hydrophobic and hydrogen-bond interactions. Soft Matter, 2016, 12, 2887-2893.	2.7	72

Matt Baker

#	Article	IF	CITATIONS
37	Supramolecular polymers for organocatalysis in water. Organic and Biomolecular Chemistry, 2015, 13, 7711-7719.	2.8	44
38	ACE2/Ang-(1–7)/Mas axis stimulates vascular repair-relevant functions of CD34 ⁺ cells. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1697-H1707.	3.2	40
39	Synthesis, Optical Properties, and Electronic Structures of Nucleobase-Containing π-Conjugated Oligomers. Journal of Organic Chemistry, 2015, 80, 1828-1840.	3.2	27
40	Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Communications, 2015, 6, 6234.	12.8	111
41	Supramolecular copolymers with stimuli-responsive sequence control. Chemical Communications, 2015, 51, 16166-16168.	4.1	18
42	From supramolecular polymers to hydrogel materials. Materials Horizons, 2014, 1, 116-120.	12.2	46
43	Molecular multifunctionalization via electronically coupled lactones. Chemical Science, 2012, 3, 1095.	7.4	13
44	ACE2 Activation Promotes Antithrombotic Activity. Molecular Medicine, 2010, 16, 210-215.	4.4	122
45	Rapid access to C 3- and C s-symmetric AAT organogelators via ring opening of a common benzotrifuranone precursor. Supramolecular Chemistry, 2010, 22, 789-802.	1.2	8
46	Benzotrifuranone: Synthesis, Structure, and Access to Polycyclic Heteroaromatics. Organic Letters, 2009, 11, 4314-4317.	4.6	27
47	Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS Applied Materials & Interfaces, 0, , .	8.0	2