
Robert J Zatorre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009427/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Training allows switching from limited-capacity manipulations to large-capacity perceptual processing. Cerebral Cortex, 2023, 33, 1826-1842.	2.9	2
2	Early musical training shapes cortico-cerebellar structural covariation. Brain Structure and Function, 2022, 227, 407-419.	2.3	9
3	Supramodality of neural entrainment: Rhythmic visual stimulation causally enhances auditory working memory performance. Science Advances, 2022, 8, eabj9782.	10.3	20
4	MEG Intersubject Phase Locking of Stimulus-Driven Activity during Naturalistic Speech Listening Correlates with Musical Training. Journal of Neuroscience, 2021, 41, 2713-2722.	3.6	11
5	Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS. Journal of Neuroscience, 2021, 41, 3889-3899.	3.6	18
6	Mapping Specific Mental Content during Musical Imagery. Cerebral Cortex, 2021, 31, 3622-3640.	2.9	10
7	Oscillatory Entrainment of the Frequency-following Response in Auditory Cortical and Subcortical Structures. Journal of Neuroscience, 2021, 41, 4073-4087.	3.6	20
8	Common and distinct neural correlates of music and food-induced pleasure: A coordinate-based meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 2021, 123, 61-71.	6.1	33
9	The Microstructural Plasticity of the Arcuate Fasciculus Undergirds Improved Speech in Noise Perception in Musicians. Cerebral Cortex, 2021, 31, 3975-3985.	2.9	12
10	Engagement in Music-Related Activities During the COVID-19 Pandemic as a Mirror of Individual Differences in Musical Reward and Coping Strategies. Frontiers in Psychology, 2021, 12, 673772.	2.1	23
11	Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEG-tDCS reveals causal role of right auditory cortex in pitch learning. NeuroImage, 2021, 233, 117915.	4.2	13
12	Dopamine modulations of rewardâ€driven music memory consolidation. Annals of the New York Academy of Sciences, 2021, 1502, 85-98.	3.8	17
13	Effector-independent brain network for auditory-motor integration: fMRI evidence from singing and cello playing. NeuroImage, 2021, 237, 118128.	4.2	4
14	Modulating Cortical Instrument Representations During Auditory Stream Segregation and Integration With Polyphonic Music. Frontiers in Neuroscience, 2021, 15, 635937.	2.8	4
15	The Reward of Musical Emotions and Expectations. , 2020, , 402-415.		1
16	Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science, 2020, 367, 1043-1047.	12.6	137
17	Musicians at the Cocktail Party: Neural Substrates of Musical Training During Selective Listening in Multispeaker Situations. Cerebral Cortex, 2019, 29, 3253-3265.	2.9	37
18	Evolving perspectives on the sources of the frequency-following response. Nature Communications, 2019, 10, 5036.	12.8	116

#	Article	IF	CITATIONS
19	Predictability and Uncertainty in the Pleasure of Music: A Reward for Learning?. Journal of Neuroscience, 2019, 39, 9397-9409.	3.6	105
20	Reply to de Fleurian et al.: Toward a fuller understanding of reward prediction errors and their role in musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20815-20816.	7.1	2
21	Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3793-3798.	7.1	186
22	Rhythm and time in the premotor cortex. PLoS Biology, 2019, 17, e3000293.	5.6	5
23	White Matter Microstructure Reflects Individual Differences in Music Reward Sensitivity. Journal of Neuroscience, 2019, 39, 5018-5027.	3.6	57
24	The Music-In-Noise Task (MINT): A Tool for Dissecting Complex Auditory Perception. Frontiers in Neuroscience, 2019, 13, 199.	2.8	12
25	Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the United States of America, 2019, 116, 3310-3315.	7.1	88
26	Decoding Task-Related Functional Brain Imaging Data to Identify Developmental Disorders: The Case of Congenital Amusia. Frontiers in Neuroscience, 2019, 13, 1165.	2.8	17
27	Specialized neural dynamics for verbal and tonal memory: fMRI evidence in congenital amusia. Human Brain Mapping, 2019, 40, 855-867.	3.6	44
28	Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production. ENeuro, 2019, 6, ENEURO.0447-18.2019.	1.9	19
29	The impact of visual art and emotional sounds in specific musical anhedonia. Progress in Brain Research, 2018, 237, 399-413.	1.4	26
30	Network-Based Asymmetry of the Human Auditory System. Cerebral Cortex, 2018, 28, 2655-2664.	2.9	51
31	Driving working memory with frequencyâ€ŧuned noninvasive brain stimulation. Annals of the New York Academy of Sciences, 2018, 1423, 126-137.	3.8	23
32	Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2018, 2, 27-32.	12.0	90
33	Practice makes plasticity. Nature Neuroscience, 2018, 21, 1645-1646.	14.8	24
34	Brenda Milner and the origins of cognitive neuroscience. Current Biology, 2018, 28, R638-R639.	3.9	2
35	Assessing Top-Down and Bottom-Up Contributions to Auditory Stream Segregation and Integration With Polyphonic Music. Frontiers in Neuroscience, 2018, 12, 121.	2.8	9
36	Partially Overlapping Brain Networks for Singing and Cello Playing. Frontiers in Neuroscience, 2018, 12, 351.	2.8	28

#	Article	IF	CITATIONS
37	Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Frontiers in Neuroscience, 2018, 12, 469.	2.8	8
38	Neural network retuning and neural predictors of learning success associated with cello training. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6056-E6064.	7.1	31
39	Modulation of Functional Connectivity in Auditory–Motor Networks in Musicians Compared with Nonmusicians. Cerebral Cortex, 2017, 27, bhw120.	2.9	69
40	Speech-in-noise perception in musicians: A review. Hearing Research, 2017, 352, 49-69.	2.0	113
41	Experience-dependent modulation of right anterior insula and sensorimotor regions as a function of noise-masked auditory feedback in singers and nonsingers. NeuroImage, 2017, 147, 97-110.	4.2	47
42	Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance. Neuron, 2017, 94, 193-206.e5.	8.1	167
43	Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence. Journal of Neuroscience, 2017, 37, 830-838.	3.6	98
44	Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians. NeuroImage, 2017, 163, 398-412.	4.2	36
45	Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13579-13584.	7.1	94
46	White matter structure in the right planum temporale region correlates with visual motion detection thresholds in deaf people. Hearing Research, 2017, 343, 64-71.	2.0	19
47	Neural Correlates of Early Sound Encoding and their Relationship to Speech-in-Noise Perception. Frontiers in Neuroscience, 2017, 11, 479.	2.8	67
48	Feeling the Beat: Bouncing Synchronization to Vibrotactile Music in Hearing and Early Deaf People. Frontiers in Neuroscience, 2017, 11, 507.	2.8	22
49	The Neurobiology of Musical Expectations from Perception to Emotion. , 2016, , .		2
50	The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness. Neural Plasticity, 2016, 2016, 1-9.	2.2	43
51	Individual Differences in the Frequency-Following Response: Relation to Pitch Perception. PLoS ONE, 2016, 11, e0152374.	2.5	33
52	Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS). PLoS ONE, 2016, 11, e0163380.	2.5	15
53	Amazon music. Nature, 2016, 535, 496-497.	27.8	4
54	Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7337-E7345.	7.1	133

#	Article	IF	CITATIONS
55	Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 2016, 7, 11070.	12.8	310
56	Frequency Selectivity of Voxel-by-Voxel Functional Connectivity in Human Auditory Cortex. Cerebral Cortex, 2016, 26, 211-224.	2.9	41
57	Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cerebral Cortex, 2016, 26, 3125-3134.	2.9	79
58	Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Frontiers in Neuroscience, 2015, 9, 174.	2.8	25
59	Trade-Off in the Sound Localization Abilities of Early Blind Individuals between the Horizontal and Vertical Planes. Journal of Neuroscience, 2015, 35, 6051-6056.	3.6	46
60	Representations of Invariant Musical Categories Are Decodable by Pattern Analysis of Locally Distributed BOLD Responses in Superior Temporal and Intraparietal Sulci. Cerebral Cortex, 2015, 25, 1947-1957.	2.9	24
61	Early visual deprivation changes cortical anatomical covariance in dorsal-stream structures. Neurolmage, 2015, 108, 194-202.	4.2	33
62	Reorganization of Auditory Cortex in Early-deaf People: Functional Connectivity and Relationship to Hearing Aid Use. Journal of Cognitive Neuroscience, 2015, 27, 150-163.	2.3	57
63	Expert music performance: cognitive, neural, and developmental bases. Progress in Brain Research, 2015, 217, 57-86.	1.4	60
64	Musical pleasure and reward: mechanisms and dysfunction. Annals of the New York Academy of Sciences, 2015, 1337, 202-211.	3.8	91
65	Neurobiology: Sounding the Alarm. Current Biology, 2015, 25, R805-R806.	3.9	14
66	Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging. Journal of Neuroscience, 2015, 35, 14602-14611.	3.6	82
67	Predictions and the brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 2015, 19, 86-91.	7.8	277
68	Early Musical Training Is Linked to Gray Matter Structure in the Ventral Premotor Cortex and Auditory–Motor Rhythm Synchronization Performance. Journal of Cognitive Neuroscience, 2014, 26, 755-767.	2.3	89
69	Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. Brain, 2014, 137, 1224-1240.	7.6	54
70	Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: Evidence from magnetoencephalography. NeuroImage, 2014, 94, 96-106.	4.2	32
71	Dissociation between Musical and Monetary Reward Responses in Specific Musical Anhedonia. Current Biology, 2014, 24, 699-704.	3.9	132
72	Automatic domain-general processing of sound source identity in the left posterior middle frontal gyrus. Cortex, 2014, 58, 170-185.	2.4	15

#	Article	IF	CITATIONS
73	Editors' introduction to Hearing Research special issue: Music: A window into the hearing brain. Hearing Research, 2014, 308, 1.	2.0	2
74	Brain and art. Frontiers in Human Neuroscience, 2014, 8, 465.	2.0	5
75	Enhancement of Visual Motion Detection Thresholds in Early Deaf People. PLoS ONE, 2014, 9, e90498.	2.5	54
76	Predispositions and Plasticity in Music and Speech Learning: Neural Correlates and Implications. Science, 2013, 342, 585-589.	12.6	135
77	Mapping interhemispheric connectivity using functional MRI after transcranial magnetic stimulation on the human auditory cortex. NeuroImage, 2013, 79, 162-171.	4.2	37
78	From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10430-10437.	7.1	379
79	Complex cognitive functions underlie aesthetic emotions. Physics of Life Reviews, 2013, 10, 279-280.	2.8	3
80	Common parietal activation in musical mental transformations across pitch and time. NeuroImage, 2013, 75, 27-35.	4.2	65
81	Distinct electrophysiological indices of maintenance in auditory and visual short-term memory. Neuropsychologia, 2013, 51, 2939-2952.	1.6	36
82	Repetition Suppression in Auditory–Motor Regions to Pitch and Temporal Structure in Music. Journal of Cognitive Neuroscience, 2013, 25, 313-328.	2.3	45
83	Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period. Journal of Neuroscience, 2013, 33, 1282-1290.	3.6	282
84	Interactions Between the Nucleus Accumbens and Auditory Cortices Predict Music Reward Value. Science, 2013, 340, 216-219.	12.6	546
85	Neural interactions that give rise to musical pleasure Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 62-75.	1.3	56
86	Structural brain changes linked to delayed first language acquisition in congenitally deaf individuals. NeuroImage, 2013, 66, 42-49.	4.2	78
87	Interacting Cortical and Basal Ganglia Networks Underlying Finding and Tapping to the Musical Beat. Journal of Cognitive Neuroscience, 2013, 25, 401-420.	2.3	132
88	Abstract Encoding of Auditory Objects in Cortical Activity Patterns. Cerebral Cortex, 2013, 23, 2025-2037.	2.9	81
89	Individual Differences in Music Reward Experiences. Music Perception, 2013, 31, 118-138.	1.1	213
90	Experience-Dependent Modulation of Feedback Integration during Singing: Role of the Right Anterior Insula. Journal of Neuroscience, 2013, 33, 6070-6080.	3.6	76

#	Article	IF	CITATIONS
91	The effect of blindfolding on sound localization. Multisensory Research, 2013, 26, 228-229.	1.1	Ο
92	Familiarity mediates the relationship between emotional arousal and pleasure during music listening. Frontiers in Human Neuroscience, 2013, 7, 534.	2.0	90
93	The influence of vision on sound localization abilities in both the horizontal and vertical planes. Frontiers in Psychology, 2013, 4, 932.	2.1	34
94	Neuroanatomical correlates of musical transposition in adolescents: a longitudinal approach. Frontiers in Systems Neuroscience, 2013, 7, 113.	2.5	5
95	Musical Melody and Speech Intonation: Singing a Different Tune. PLoS Biology, 2012, 10, e1001372.	5.6	158
96	Neuronal Correlates of Perception, Imagery, and Memory for Familiar Tunes. Journal of Cognitive Neuroscience, 2012, 24, 1382-1397.	2.3	153
97	Mapping the After-effects of Theta Burst Stimulation on the Human Auditory Cortex with Functional Imaging. Journal of Visualized Experiments, 2012, , e3985.	0.3	11
98	Anatomical correlates of dynamic auditory processing: Relationship to literacy during early adolescence. NeuroImage, 2012, 60, 1287-1295.	4.2	16
99	Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 2012, 76, 486-502.	8.1	602
100	Modulation of Auditory Cortex Response to Pitch Variation Following Training with Microtonal Melodies. Frontiers in Psychology, 2012, 3, 544.	2.1	43
101	The neurobiological basis of musical expectations. , 2012, , .		2
102	Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 2012, 15, 528-536.	14.8	1,358
103	Reminiscences of the First Olfactory Neuroimaging Study on the 20th Anniversary of its Publication. Chemosensory Perception, 2012, 5, 2-3.	1.2	0
104	Organization and Reorganization of Sensory-Deprived Cortex. Current Biology, 2012, 22, R168-R173.	3.9	74
105	Beyond auditory cortex: working with musical thoughts. Annals of the New York Academy of Sciences, 2012, 1252, 222-228.	3.8	16
106	Cortical Processing of Music. Springer Handbook of Auditory Research, 2012, , 261-294.	0.7	18
107	Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind. Frontiers in Psychology, 2011, 2, 48.	2.1	43
108	Interhemispheric Connectivity Influences the Degree of Modulation of TMS-Induced Effects during Auditory Processing. Frontiers in Psychology, 2011, 2, 161.	2.1	26

#	Article	IF	CITATIONS
109	Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 2011, 14, 257-262.	14.8	1,149
110	A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia, 2011, 49, 878-887.	1.6	55
111	Functional MRI Evidence of an Abnormal Neural Network for Pitch Processing in Congenital Amusia. Cerebral Cortex, 2011, 21, 292-299.	2.9	185
112	Tactile–Auditory Shape Learning Engages the Lateral Occipital Complex. Journal of Neuroscience, 2011, 31, 7848-7856.	3.6	57
113	Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 2011, 14, 257-262.	14.8	639
114	Cortical Speech and Music Processes Revealed by Functional Neuroimaging. , 2011, , 657-677.		9
115	Feel What You Say: An Auditory Effect on Somatosensory Perception. PLoS ONE, 2011, 6, e22829.	2.5	9
116	Neuroanatomical correlates of olfactory performance. Experimental Brain Research, 2010, 201, 1-11.	1.5	96
117	Can you hear shapes you touch?. Experimental Brain Research, 2010, 202, 747-754.	1.5	18
118	Crossmodal recruitment of primary visual cortex following brief exposure to bimodal audiovisual stimuli. Neuropsychologia, 2010, 48, 591-600.	1.6	55
119	Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia, 2010, 48, 607-618.	1.6	109
120	Semantic Elaboration in Auditory and Visual Spatial Memory. Frontiers in Psychology, 2010, 1, 228.	2.1	12
121	A Role for the Intraparietal Sulcus in Transforming Musical Pitch Information. Cerebral Cortex, 2010, 20, 1350-1359.	2.9	142
122	An acoustical study of vocal pitch matching in congenital amusia. Journal of the Acoustical Society of America, 2010, 127, 504-512.	1.1	43
123	Mental Reversal of Imagined Melodies: A Role for the Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 2010, 22, 775-789.	2.3	118
124	Cortical structure predicts success in performing musical transformation judgments. NeuroImage, 2010, 53, 26-36.	4.2	136
125	Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training. PLoS ONE, 2010, 5, e11181.	2.5	22
126	Heterochrony and Cross-Species Intersensory Matching by Infant Vervet Monkeys. PLoS ONE, 2009, 4, e4302.	2.5	33

#	Article	IF	CITATIONS
127	The Rewarding Aspects of Music Listening Are Related to Degree of Emotional Arousal. PLoS ONE, 2009, 4, e7487.	2.5	417
128	Neuroanatomical Correlates of Musicianship as Revealed by Cortical Thickness and Voxel-Based Morphometry. Cerebral Cortex, 2009, 19, 1583-1596.	2.9	336
129	Relating Structure to Function: Heschl's Gyrus and Acoustic Processing. Journal of Neuroscience, 2009, 29, 61-69.	3.6	193
130	Voice perception in blind persons: A functional magnetic resonance imaging study. Neuropsychologia, 2009, 47, 2967-2974.	1.6	105
131	Individual differences in the acquisition of second language phonology. Brain and Language, 2009, 109, 55-67.	1.6	96
132	The neuronal substrates of human olfactory based kin recognition. Human Brain Mapping, 2009, 30, 2571-2580.	3.6	82
133	The absolute pitch mind continues to reveal itself. Journal of Biology, 2009, 8, 75.	2.7	23
134	The Role of Auditory and Premotor Cortex in Sensorimotor Transformations. Annals of the New York Academy of Sciences, 2009, 1169, 15-34.	3.8	107
135	Music Lexical Networks. Annals of the New York Academy of Sciences, 2009, 1169, 256-265.	3.8	92
136	Loadâ€dependent Brain Activity Related to Acoustic Shortâ€ŧerm Memory for Pitch. Annals of the New York Academy of Sciences, 2009, 1169, 273-277.	3.8	19
137	Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14611-14616.	7.1	177
138	A Distribution of Absolute Pitch Ability as Revealed by Computerized Testing. Music Perception, 2009, 27, 89-101.	1.1	63
139	Positional and surface area asymmetry of the human cerebral cortex. NeuroImage, 2009, 46, 895-903.	4.2	126
140	Depth electrode recordings show double dissociation between pitch processing in lateral Heschl's gyrus and sound onset processing in medial Heschl's gyrus. Experimental Brain Research, 2008, 187, 97-105.	1.5	77
141	Generalized learning of visual-to-auditory substitution in sighted individuals. Brain Research, 2008, 1242, 263-275.	2.2	57
142	Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 2008, 46, 632-639.	1.6	210
143	Musically Speaking. Neuron, 2008, 60, 532-533.	8.1	2
144	Differential occipital responses in early- and late-blind individuals during a sound-source discrimination task. NeuroImage, 2008, 40, 746-758.	4.2	129

Robert J Zatorre

#	Article	IF	CITATIONS
145	Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 2008, 40, 1871-1887.	4.2	223
146	Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral Cortex, 2008, 18, 2844-2854.	2.9	598
147	Moving on Time: Brain Network for Auditory-Motor Synchronization is Modulated by Rhythm Complexity and Musical Training. Journal of Cognitive Neuroscience, 2008, 20, 226-239.	2.3	383
148	Neural specializations for speech and pitch: moving beyond the dichotomies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1087-1104.	4.0	312
149	Volume of Left Heschl's Gyrus and Linguistic Pitch Learning. Cerebral Cortex, 2008, 18, 828-836.	2.9	184
150	Cortical Thickness in Congenital Amusia: When Less Is Better Than More. Journal of Neuroscience, 2007, 27, 13028-13032.	3.6	249
151	The Role of the Dorsolateral Prefrontal Cortex in Bimodal Divided Attention: Two Transcranial Magnetic Stimulation Studies. Journal of Cognitive Neuroscience, 2007, 19, 907-920.	2.3	80
152	There's more to auditory cortex than meets the ear. Hearing Research, 2007, 229, 24-30.	2.0	37
153	When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 2007, 8, 547-558.	10.2	1,212
154	Asymmetries of the planum temporale and Heschl's gyrus: relationship to language lateralization. Brain, 2006, 129, 1164-1176.	7.6	215
155	Bilingual brain organization: A functional magnetic resonance adaptation study. NeuroImage, 2006, 31, 366-375.	4.2	95
156	Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. NeuroImage, 2006, 31, 1673-1681.	4.2	218
157	Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 2006, 32, 1771-1781.	4.2	261
158	A positron emission tomography study during auditory localization by late-onset blind individuals. NeuroReport, 2006, 17, 383-388.	1.2	55
159	Word and nonword repetition in bilingual subjects: A PET study. Human Brain Mapping, 2006, 27, 153-161.	3.6	69
160	Morphometry of the amusic brain: a two-site study. Brain, 2006, 129, 2562-2570.	7.6	207
161	Tapping in Synchrony to Auditory Rhythms: Effect of Temporal Structure on Behavior and Neural Activity. Annals of the New York Academy of Sciences, 2005, 1060, 400-403.	3.8	9
162	Differences in Gray Matter between Musicians and Nonmusicians. Annals of the New York Academy of Sciences, 2005, 1060, 395-399.	3.8	88

#	Article	IF	CITATIONS
163	Neural Substrates Governing Audiovocal Integration for Vocal Pitch Regulation in Singing. Annals of the New York Academy of Sciences, 2005, 1060, 404-408.	3.8	49
164	Music, the food of neuroscience?. Nature, 2005, 434, 312-315.	27.8	253
165	Finding the missing fundamental. Nature, 2005, 436, 1093-1094.	27.8	12
166	Attention to Simultaneous Unrelated Auditory and Visual Events: Behavioral and Neural Correlates. Cerebral Cortex, 2005, 15, 1609-1620.	2.9	205
167	A Functional Neuroimaging Study of Sound Localization: Visual Cortex Activity Predicts Performance in Early-Blind Individuals. PLoS Biology, 2005, 3, e27.	5.6	330
168	Conditional Associative Memory for Musical Stimuli in Nonmusicians: Implications for Absolute Pitch. Journal of Neuroscience, 2005, 25, 7718-7723.	3.6	57
169	Mental Concerts: Musical Imagery and Auditory Cortex. Neuron, 2005, 47, 9-12.	8.1	291
170	Brain Organization for Music Processing. Annual Review of Psychology, 2005, 56, 89-114.	17.7	579
171	Auditory Cortex Processing Streams: Where Are They and What Do They Do?. , 2005, , 277-290.		2
172	Sensitivity to Auditory Object Features in Human Temporal Neocortex. Journal of Neuroscience, 2004, 24, 3637-3642.	3.6	177
173	Right temporal cortex is critical for utilization of melodic contextual cues in a pitch constancy task. Brain, 2004, 127, 1616-1625.	7.6	58
174	Pitch discrimination in the early blind. Nature, 2004, 430, 309-309.	27.8	345
175	Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 2004, 42, 1281-1292.	1.6	223
176	Learning new sounds of speech: reallocation of neural substrates. NeuroImage, 2004, 21, 494-506.	4.2	214
177	Music and the Brain. Annals of the New York Academy of Sciences, 2003, 999, 4-14.	3.8	84
178	Recognition of Interleaved Melodies. Annals of the New York Academy of Sciences, 2003, 999, 152-154.	3.8	11
179	Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 2003, 6, 692-695.	14.8	200
180	The morphometry of auditory cortex in the congenitally deaf measured using MRI. NeuroImage, 2003, 20, 1215-1225.	4.2	131

#	Article	IF	CITATIONS
181	Sound analysis in auditory cortex. Trends in Neurosciences, 2003, 26, 229-230.	8.6	24
182	Adaptation to speaker's voice in right anterior temporal lobe. NeuroReport, 2003, 14, 2105-2109.	1.2	337
183	On the Nature of Early Music Training and Absolute Pitch: A Reply to Brown, Sachs, Cammuso, and Folstein. Music Perception, 2003, 21, 105-110.	1.1	35
184	Olfactory learning: convergent findings from lesion and brain imaging studies in humans. Brain, 2002, 125, 86-101.	7.6	114
185	Congenital Amusia. Neuron, 2002, 33, 185-191.	8.1	296
186	Anatomical Correlates of Learning Novel Speech Sounds. Neuron, 2002, 35, 997-1010.	8.1	267
187	Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences, 2002, 6, 37-46.	7.8	1,372
188	Human temporal-lobe response to vocal sounds. Cognitive Brain Research, 2002, 13, 17-26.	3.0	375
189	Where is 'where' in the human auditory cortex?. Nature Neuroscience, 2002, 5, 905-909.	14.8	308
190	Influence of tonal context and timbral variation on perception of pitch. Perception & Psychophysics, 2002, 64, 198-207.	2.3	97
191	Mental Models and Musical Minds. Science, 2002, 298, 2138-2139.	12.6	34
192	Deficits of musical timbre perception after unilateral temporal-lobe lesion revealed with multidimensional scaling. Brain, 2002, 125, 511-523.	7.6	47
193	Cerebral Organization in a Right-handed Trilingual Patient with Right-hemisphere Speech: a Positron Emission Tomography Study. Neurocase, 2002, 8, 369-375.	0.6	0
194	A Cross-Linguistic PET Study of Tone Perception in Mandarin Chinese and English Speakers. NeuroImage, 2001, 13, 646-653.	4.2	215
195	Working Memory in Another Dimension: Functional Imaging of Human Olfactory Working Memory. NeuroImage, 2001, 14, 650-660.	4.2	95
196	Do You See What I'm Saying? Interactions between Auditory and Visual Cortices in Cochlear Implant Users. Neuron, 2001, 31, 13-14.	8.1	19
197	Spectral and Temporal Processing in Human Auditory Cortex. Cerebral Cortex, 2001, 11, 946-953.	2.9	1,041
198	Spatial Localization after Excision of Human Auditory Cortex. Journal of Neuroscience, 2001, 21, 6321-6328.	3.6	167

#	Article	IF	CITATIONS
199	Neural Specializations for Tonal Processing. Annals of the New York Academy of Sciences, 2001, 930, 193-210.	3.8	151
200	Neural mechanisms involved in odor pleasantness and intensity judgments. NeuroReport, 2000, 11, 2711-2716.	1.2	143
201	â€~What', â€~where' and â€~how' in auditory cortex. Nature Neuroscience, 2000, 3, 965-966.	14.8	261
202	Voice-selective areas in human auditory cortex. Nature, 2000, 403, 309-312.	27.8	1,582
203	Functional and Structural Imaging of the Human Auditory System. , 2000, , 365-402.		29
204	Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 2000, 123, 155-163.	7.6	334
205	Brain Imaging Studies of Musical Perception and Musical Imagery. Journal of New Music Research, 1999, 28, 229-236.	0.8	10
206	Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 1999, 2, 382-387.	14.8	908
207	When That Tune Runs Through Your Head: A PET Investigation of Auditory Imagery for Familiar Melodies. Cerebral Cortex, 1999, 9, 697-704.	2.9	430
208	Event-Related fMRI of the Auditory Cortex. NeuroImage, 1999, 10, 417-429.	4.2	276
209	Auditory Attention to Space and Frequency Activates Similar Cerebral Systems. NeuroImage, 1999, 10, 544-554.	4.2	211
210	Cerebral organization in bilinguals. NeuroReport, 1999, 10, 2841-2845.	1.2	194
211	Human cortical gustatory areas. NeuroReport, 1999, 10, 7-13.	1.2	416
212	Localization of cerebral activity during simple singing. NeuroReport, 1999, 10, 3979-3984.	1.2	137
213	How do our brains analyze temporal structure in sound?. Nature Neuroscience, 1998, 1, 343-345.	14.8	4
214	Children Who Can't Smell the Coffee: Isolated Congenital Anosmia. Journal of Child Neurology, 1998, 13, 168-172.	1.4	21
215	Constraints on the selection of auditory information Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 66-79.	0.9	85
216	Time-Related Changes in Neural Systems Underlying Attention and Arousal During the Performance of an Auditory Vigilance Task. Journal of Cognitive Neuroscience, 1997, 9, 392-408.	2.3	459

#	Article	IF	CITATIONS
217	Obligatory role of the LIFG in synonym generation. NeuroReport, 1997, 8, 3275-3278.	1.2	38
218	Flavor processing. NeuroReport, 1997, 8, 3913-3917.	1.2	252
219	Left-hemisphere specialization for the processing of acoustic transients. NeuroReport, 1997, 8, 1761-1765.	1.2	104
220	A Role for the Right Anterior Temporal Lobe in Taste Quality Recognition. Journal of Neuroscience, 1997, 17, 5136-5142.	3.6	146
221	Hearing in the Mind's Ear: A PET Investigation of Musical Imagery and Perception. Journal of Cognitive Neuroscience, 1996, 8, 29-46.	2.3	414
222	Modulation of Cerebral Blood Flow in the Human Auditory Cortex During Speech: Role of Motor-to-sensory Discharges. European Journal of Neuroscience, 1996, 8, 2236-2246.	2.6	260
223	Functional PET Scanning in the Preoperative Assessment of Cerebral Arteriovenous Malformations. Stereotactic and Functional Neurosurgery, 1995, 65, 60-64.	1.5	32
224	Preserved auditory spatial localization following cerebral hemispherectomy. Brain, 1995, 118, 879-889.	7.6	40
225	Temporal lobe epilepsy caused by domoic acid intoxication: Evidence for glutamate receptor-mediated excitotoxicity in humans. Annals of Neurology, 1995, 37, 123-126.	5.3	213
226	Contribution of the right temporal lobe to musical timbre discrimination. Neuropsychologia, 1994, 32, 231-240.	1.6	118
227	Music, Language, Speech, and Brain Language and Speech, 1994, 37, 61-66.	1.1	0
228	Effect of unilateral temporal-lobe excision on perception and imagery of songs. Neuropsychologia, 1993, 31, 221-232.	1.6	142
229	Language Localization with Activation Positron Emission Tomography Scanning. Neurosurgery, 1992, 31, 369-372.	1.1	70
230	Functional localization and lateralization of human olfactory cortex. Nature, 1992, 360, 339-340.	27.8	636
231	Learning and retention of melodic and verbal information after unilateral temporal lobectomy. Neuropsychologia, 1992, 30, 815-826.	1.6	76
232	ROLE OF THE RIGHT TEMPORAL NEOCORTEX IN RETENTION OF PITCH IN AUDITORY SHORT-TERM MEMORY. Brain, 1991, 114, 2403-2417.	7.6	250
233	Right-nostril advantage for discrimination of odors. Perception & Psychophysics, 1990, 47, 526-531.	2.3	123
234	Neurologic Sequelae of Domoic Acid Intoxication Due to the Ingestion of Contaminated Mussels. New England Journal of Medicine, 1990, 322, 1781-1787.	27.0	533

#	Article	IF	CITATIONS
235	Perceptual asymmetry on the dichotic fused words test and cerebral speech lateralization determined by the carotid sodium amytal test. Neuropsychologia, 1989, 27, 1207-1219.	1.6	178
236	Multiple coding strategies in the retention of musical tones by possessors of absolute pitch. Memory and Cognition, 1989, 17, 582-589.	1.6	81
237	Intact Absolute Pitch Ability After Left Temporal Lobectomy. Cortex, 1989, 25, 567-580.	2.4	25
238	On the representation of multiple languages in the brain: Old problems and new directions. Brain and Language, 1989, 36, 127-147.	1.6	64
239	Effects of temporal neocortical excisions on musical processing. Contemporary Music Review, 1989, 4, 265-277.	0.3	3
240	Olfactory identification deficits in patients with focal cerebral excision. Neuropsychologia, 1988, 26, 387-400.	1.6	287
241	Impaired stereoscopic detection thresholds after left or right temporal lobectomy. Neuropsychologia, 1988, 26, 547-554.	1.6	25
242	Melodic and harmonic discrimination following unilateral cerebral excision. Brain and Cognition, 1988, 7, 348-360.	1.8	100
243	Pitch perception of complex tones and human temporalâ€lobe function. Journal of the Acoustical Society of America, 1988, 84, 566-572.	1.1	295
244	Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia, 1985, 23, 31-41.	1.6	178
245	Monoamine activity correlates with psychometric deficits in Korsakoff's disease. Behavioural Brain Research, 1985, 15, 247-254.	2.2	27
246	Musical Perception and Cerebral Function: A Critical Review. Music Perception, 1984, 2, 196-221.	1.1	72
247	Semantic encoding deficits in a case of traumatic amnesia. Brain and Cognition, 1983, 2, 331-345.	1.8	21
248	Category-boundary effects and speeded sorting with a harmonic musical-interval continuum: Evidence for dual processing Journal of Experimental Psychology: Human Perception and Performance, 1983, 9, 739-752.	0.9	22
249	Cerebral lateralization in bilinguals: Methodological issues. Brain and Language, 1982, 15, 40-54.	1.6	59
250	A right-ear advantage for dichotic listening in bilingual children. Brain and Language, 1981, 13, 389-396.	1.6	42
251	Measuring phoneme boundaries four ways. Journal of the Acoustical Society of America, 1980, 68, 431-439.	1.1	17
252	Studies of place and manner of articulation in syllableâ€final position. Journal of the Acoustical Society of America, 1979, 66, 1207-1210.	1.1	4

#	Article	IF	CITATIONS
253	Identification, discrimination, and selective adaptation of simultaneous musical intervals. Perception & Psychophysics, 1979, 26, 384-395.	2.3	73
254	Recognition of dichotic melodies by musicians and nonmusicians. Neuropsychologia, 1979, 17, 607-617.	1.6	116
255	Laterality differences for word identification in bilinguals. Brain and Language, 1978, 6, 158-167.	1.6	41
256	HUMAN OLFACTORY DISCRIMINATION AFTER UNILATERAL FRONTAL OR TEMPORAL LOBECTOMY. Brain, 0, , .	7.6	1