Steven J Sollott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8009228/publications.pdf

Version: 2024-02-01

24 papers 8,957 citations

430754 18 h-index 23 g-index

25 all docs

25 docs citations

25 times ranked

12616 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 2014, 94, 909-950.	13.1	3,274
2	Reactive Oxygen Species (Ros-Induced) Ros Release. Journal of Experimental Medicine, 2000, 192, 1001-1014.	4.2	1,263
3	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	1.1	1,161
4	Mitochondrial ROS-induced ROS release: An update and review. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 509-517.	0.5	892
5	Glycogen synthase kinase- $3\hat{l}^2$ mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation, 2004, 113, 1535-1549.	3.9	854
6	Role of Glycogen Synthase Kinase- $3\hat{l}^2$ in Cardioprotection. Circulation Research, 2009, 104, 1240-1252.	2.0	330
7	Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nature Cell Biology, 2001, 3, 867-873.	4.6	295
8	Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovascular Research, 2009, 83, 213-225.	1.8	208
9	Protection in the aged heart: preventing the heart-break of old age?. Cardiovascular Research, 2005, 66, 233-244.	1.8	127
10	<i>The Identity and Regulation of the Mitochondrial Permeability Transition Pore</i> New York Academy of Sciences, 2008, 1123, 197-212.	1.8	122
11	Examining Intracellular Organelle Function Using Fluorescent Probes. Circulation Research, 2004, 95, 239-252.	2.0	77
12	Mitochondrial health, the epigenome and healthspan. Clinical Science, 2016, 130, 1285-1305.	1.8	57
13	Blueberry-Enriched Diet Protects Rat Heart from Ischemic Damage. PLoS ONE, 2009, 4, e5954.	1.1	54
14	Mitochondrial respiration and ROS emission during \hat{l}^2 -oxidation in the heart: An experimental-computational study. PLoS Computational Biology, 2017, 13, e1005588.	1.5	51
15	Ca2+/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. Journal of Molecular and Cellular Cardiology, 2016, 98, 73-82.	0.9	34
16	The Old Heart: Operating on the Edge. Novartis Foundation Symposium, 2008, 235, 172-201.	1.2	28
17	ATP Synthase K+- and H+-Fluxes Drive ATP Synthesis and Enable Mitochondrial K+-"Uniporter― Function: I. Characterization of Ion Fluxes. Function, 2022, 3, zqab065.	1.1	25
18	Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin?. Journal of Molecular and Cellular Cardiology, 2021, 151, 113-125.	0.9	24

STEVEN J SOLLOTT

#	Article	IF	CITATION
19	Mitochondrial health is enhanced in rats with higher vs. lower intrinsic exercise capacity and extended lifespan. Npj Aging and Mechanisms of Disease, 2021, 7, 1.	4.5	20
20	ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-"uniporter―function: II. Ion and ATP synthase flux regulation. Function, 2022, 3, zqac001.	1.1	20
21	Glucagon-like peptide-1 does not mediate amylase release from AR42J cells. , 1999, 181, 470-478.		17
22	Setting the Record Straight: A New Twist on the Chemiosmotic Mechanism of Oxidative Phosphorylation. Function, 2022, 3, .	1.1	8
23	Computational modeling of mitochondrial K+- and H+-driven ATP synthesis. Journal of Molecular and Cellular Cardiology, 2022, 165, 9-18.	0.9	7
24	HNO Protects the Myocardium against Reperfusion Injury, Inhibiting the mPTP Opening via PKCl $\hat{\mu}$ Activation. Antioxidants, 2022, 11, 382.	2.2	6