Riccardo Frisenda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008481/publications.pdf

Version: 2024-02-01

81 papers 5,147 citations

38 h-index 70 g-index

88 all docs 88 docs citations

88 times ranked 7058 citing authors

#	Article	IF	CITATIONS
1	Biaxial versus uniaxial strain tuning of single-layer MoS2. Nano Materials Science, 2022, 4, 44-51.	8.8	30
2	Strongly Anisotropic Strainâ€Tunability of Excitons in Exfoliated ZrSe ₃ . Advanced Materials, 2022, 34, e2103571.	21.0	16
3	Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices. Applied Surface Science, 2022, 581, 151858.	6.1	16
4	Stretching ReS2 along different crystal directions: Anisotropic tuning of the vibrational and optical responses. Applied Physics Letters, 2022, 120, .	3.3	6
5	Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. Npj Flexible Electronics, 2022, 6, .	10.7	21
6	Strain induced lifting of the charged exciton degeneracy in monolayer MoS ₂ on a GaAs nanomembrane. 2D Materials, 2022, 9, 045006.	4.4	4
7	Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Research, 2021, 14, 1698-1703.	10.4	63
8	Gateâ€Switchable Photovoltaic Effect in BP/MoTe ₂ van der Waals Heterojunctions for Selfâ€Driven Logic Optoelectronics. Advanced Optical Materials, 2021, 9, 2001802.	7. 3	32
9	Ultra-broad spectral photo-response in FePS3 air-stable devices. Npj 2D Materials and Applications, 2021, 5, .	7.9	35
10	In-plane anisotropic optical and mechanical properties of two-dimensional MoO3. Npj 2D Materials and Applications, $2021, 5, \ldots$	7.9	33
11	Optical microscopy–based thickness estimation in thin GaSe flakes. Materials Today Advances, 2021, 10, 100143.	5.2	9
12	Integrating van der Waals materials on paper substrates for electrical and optical applications. Applied Materials Today, 2021, 23, 101012.	4.3	9
13	Integrating superconducting van der Waals materials on paper substrates. Materials Advances, 2021, 2, 3274-3281.	5.4	6
14	Paper-supported WS2 strain gauges. Sensors and Actuators A: Physical, 2021, 332, 113204.	4.1	4
15	The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials Horizons, 2020, 7, 252-262.	12.2	164
16	Biaxial strain tuning of interlayer excitons in bilayer MoS ₂ . JPhys Materials, 2020, 3, 015003.	4.2	20
17	Thickness Identification of Thin InSe by Optical Microscopy Methods. Advanced Photonics Research, 2020, 1, 2000025.	3.6	11
18	Drawing WS ₂ thermal sensors on paper substrates. Nanoscale, 2020, 12, 22091-22096.	5.6	14

#	Article	IF	CITATIONS
19	Naturally occurring van der Waals materials. Npj 2D Materials and Applications, 2020, 4, .	7.9	75
20	Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 2020, 4, .	7.9	528
21	Giant Piezoresistive Effect and Strong Bandgap Tunability in Ultrathin InSe upon Biaxial Strain. Advanced Science, 2020, 7, 2001645.	11.2	22
22	InSe Schottky Diodes Based on Van Der Waals Contacts. Advanced Functional Materials, 2020, 30, 2001307.	14.9	44
23	Microheater Actuators as a Versatile Platform for Strain Engineering in 2D Materials. Nano Letters, 2020, 20, 5339-5345.	9.1	29
24	Direct Transformation of Crystalline MoO3 into Few-Layers MoS2. Materials, 2020, 13, 2293.	2.9	2
25	MoS ₂ -on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale, 2020, 12, 19068-19074.	5 . 6	34
26	Symmetry Breakdown in Franckeite: Spontaneous Strain, Rippling, and Interlayer Moiré. Nano Letters, 2020, 20, 1141-1147.	9.1	25
27	An inexpensive system for the deterministic transfer of 2D materials. JPhys Materials, 2020, 3, 016001.	4.2	25
28	Strain creates a trion factory. Nature Photonics, 2020, 14, 269-270.	31.4	4
29	Tunable Photodetectors via In Situ Thermal Conversion of TiS3 to TiO2. Nanomaterials, 2020, 10, 711.	4.1	14
30	A system for the deterministic transfer of 2D materials under inert environmental conditions. 2D Materials, 2020, 7, 025034.	4.4	21
31	A system to test 2D optoelectronic devices in high vacuum. JPhys Materials, 2020, 3, 036001.	4.2	5
32	Superlattices based on van der Waals 2D materials. Chemical Communications, 2019, 55, 11498-11510.	4.1	48
33	A strain tunable single-layer MoS2 photodetector. Materials Today, 2019, 27, 8-13.	14.2	161
34	Anisotropic buckling of few-layer black phosphorus. Nanoscale, 2019, 11, 12080-12086.	5.6	29
35	Thicknessâ€Dependent Refractive Index of 1L, 2L, and 3L MoS ₂ , MoSe ₂ , WS ₂ , and WSe ₂ . Advanced Optical Materials, 2019, 7, 1900239.	7.3	155
36	Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Research, 2019, 12, 1691-1695.	10.4	46

#	Article	IF	Citations
37	Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design. European Journal of Organic Chemistry, 2019, 2019, 5334-5343.	2.4	11
38	Mechanical and liquid phase exfoliation of cylindrite: a natural van der Waals superlattice with intrinsic magnetic interactions. 2D Materials, 2019, 6, 035023.	4.4	38
39	InSe: a two-dimensional semiconductor with superior flexibility. Nanoscale, 2019, 11, 9845-9850.	5.6	64
40	A reference-free clustering method for the analysis of molecular break-junction measurements. Applied Physics Letters, $2019,114,.$	3.3	57
41	Revisiting the Buckling Metrology Method to Determine the Young's Modulus of 2D Materials. Advanced Materials, 2019, 31, e1807150.	21.0	59
42	Atomically thin p–n junctions based on two-dimensional materials. Chemical Society Reviews, 2018, 47, 3339-3358.	38.1	231
43	Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chemical Society Reviews, 2018, 47, 53-68.	38.1	473
44	Toward Air Stability of Thin GaSe Devices: Avoiding Environmental and Laserâ€Induced Degradation by Encapsulation. Advanced Functional Materials, 2018, 28, 1805304.	14.9	49
45	Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials, 2018, 8, 725.	4.1	156
46	Robotic assembly of artificial nanomaterials. Nature Nanotechnology, 2018, 13, 441-442.	31.5	12
47	Polarizationâ€Sensitive and Broadband Photodetection Based on a Mixedâ€Dimensionality TiS ₃ /Si p–n Junction. Advanced Optical Materials, 2018, 6, 1800351.	7.3	64
48	Progress on Black Phosphorus Photonics. Advanced Optical Materials, 2018, 6, 1800365.	7.3	44
49	Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study. Accounts of Chemical Research, 2018, 51, 1359-1367.	15.6	40
50	Large birefringence and linear dichroism in TiS ₃ nanosheets. Nanoscale, 2018, 10, 12424-12429.	5.6	40
51	Gate tunable photovoltaic effect in MoS ₂ vertical p–n homostructures. Journal of Materials Chemistry C, 2017, 5, 854-861.	5 . 5	50
52	Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. Journal Physics D: Applied Physics, 2017, 50, 074002.	2.8	125
53	Dielectrophoretic assembly of liquid-phase-exfoliated TiS ₃ nanoribbons for photodetecting applications. Chemical Communications, 2017, 53, 6164-6167.	4.1	22
54	Lithography-free electrical transport measurements on 2D materials by direct microprobing. Journal of Materials Chemistry C, 2017, 5, 11252-11258.	5.5	6

#	Article	IF	CITATIONS
55	Photodiodes based in La _{0.7} Sr _{0.3} MnO ₃ /single layer MoS ₂ hybrid vertical heterostructures. 2D Materials, 2017, 4, 034002.	4.4	5
56	Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. Npj 2D Materials and Applications, 2017, 1 , .	7.9	191
57	A Versatile Scanning Photocurrent Mapping System to Characterize Optoelectronic Devices based on 2D Materials. Small Methods, 2017, 1, 1700119.	8.6	24
58	Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing. Nanotechnology, 2017, 28, 455703.	2.6	45
59	High Throughput Characterization of Epitaxially Grown Single-Layer MoS2. Electronics (Switzerland), 2017, 6, 28.	3.1	16
60	Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite. Beilstein Journal of Nanotechnology, 2017, 8, 2357-2362.	2.8	27
61	Biaxial strain in atomically thin transition metal dichalcogenides. , 2017, , .		4
62	Charge transport through conjugated azomethine-based single molecules for optoelectronic applications. Organic Electronics, 2016, 34, 38-41.	2.6	28
63	Stretching-Induced Conductance Increase in a Spin-Crossover Molecule. Nano Letters, 2016, 16, 4733-4737.	9.1	96
64	Mechanically controlled quantum interference in individual π-stacked dimers. Nature Chemistry, 2016, 8, 1099-1104.	13.6	190
65	Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction. Physical Review Letters, 2016, 117, 126804.	7.8	36
66	Highly responsive UV-photodetectors based on single electrospun TiO ₂ nanofibres. Journal of Materials Chemistry C, 2016, 4, 10707-10714.	5.5	41
67	Singleâ€Molecule Spin Switch Based on Voltageâ€Triggered Distortion of the Coordination Sphere. Angewandte Chemie - International Edition, 2015, 54, 13425-13430.	13.8	138
68	Single-Molecule Break Junctions Based on a Perylene-Diimide Cyano-Functionalized (PDI8-CN2) Derivative. Nanoscale Research Letters, 2015, 10, 1011.	5.7	11
69	Electrical properties and mechanical stability of anchoring groups for single-molecule electronics. Beilstein Journal of Nanotechnology, 2015, 6, 1558-1567.	2.8	69
70	Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy. Beilstein Journal of Nanotechnology, 2015, 6, 2477-2484.	2.8	12
71	Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments. Nature Communications, 2015, 6, 10233.	12.8	36
72	Kondo Effect in a Neutral and Stable All Organic Radical Single Molecule Break Junction. Nano Letters, 2015, 15, 3109-3114.	9.1	117

#	Article	IF	CITATIONS
73	A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements. Journal of the American Chemical Society, 2014, 136, 16497-16507.	13.7	55
74	Large negative differential conductance in single-molecule break junctions. Nature Nanotechnology, 2014, 9, 830-834.	31.5	170
75	Effect of Metal Complexation on the Conductance of Single-Molecular Wires Measured at Room Temperature. Journal of the American Chemical Society, 2014, 136, 8314-8322.	13.7	45
76	Quantum interference effects at room temperature in OPV-based single-molecule junctions. Nanoscale Research Letters, 2013, 8, 234.	5.7	48
77	Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring. Angewandte Chemie - International Edition, 2013, 52, 3152-3155.	13.8	204
78	Statistical analysis of singleâ€molecule breaking traces. Physica Status Solidi (B): Basic Research, 2013, 250, 2431-2436.	1.5	56
79	Localized and Dispersive Electronic States at Ordered FePc and CoPc Chains on Au(110). Journal of Physical Chemistry C, 2010, 114, 21638-21644.	3.1	91
80	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, $0,1,98.$	2.0	2
81	Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. Open Research Europe, 0, 1, 98.	2.0	0