Esko I Kauppinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8008083/publications.pdf

Version: 2024-02-01

415 papers

19,652 citations

71 h-index

10986

119

424 all docs

424 docs citations

times ranked

424

20374 citing authors

g-index

#	Article	IF	CITATIONS
1	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	31.5	652
2	The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. Journal of Physics Condensed Matter, 2003, 15, S3011-S3035.	1.8	416
3	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
4	Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Letters, 2010, 10, 4349-4355.	9.1	384
5	A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161.	31.5	369
6	Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano, 2011, 5, 3214-3221.	14.6	300
7	Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204, 394-402.	20.2	294
8	Synthesis of Gold Nanoparticles Grafted with a Thermoresponsive Polymer by Surface-Induced Reversible-Addition-Fragmentation Chain-Transfer Polymerization. Langmuir, 2003, 19, 3499-3504.	3.5	285
9	Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 3121-3130.	11.2	279
10	Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chemical Engineering Science, 2006, 61, 4393-4402.	3.8	272
11	Singleâ€Shell Carbonâ€Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 4535-4538.	13.8	268
12	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	21.0	246
13	On the Performance of the Berner Low Pressure Impactor. Aerosol Science and Technology, 1991, 14, 33-47.	3.1	244
14	One-dimensional van der Waals heterostructures. Science, 2020, 367, 537-542.	12.6	238
15	Carbon nanotube films for ultrafast broadband technology. Optics Express, 2009, 17, 2358.	3.4	226
16	Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon, 2005, 43, 2251-2257.	10.3	219
17	High Temperatureâ€Stable Perovskite Solar Cell Based on Lowâ€Cost Carbon Nanotube Hole Contact. Advanced Materials, 2017, 29, 1606398.	21.0	209
18	Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Research, 2009, 2, 373-379.	10.4	208

#	Article	IF	CITATIONS
19	Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy and Environmental Science, 2016, 9, 461-466.	30.8	185
20	High-Throughput Synthesis of Lignin Particles (â^1/430 nm to â^1/42 Î1/4m) via Aerosol Flow Reactor: Size Fractionation and Utilization in Pickering Emulsions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23302-23310.	8.0	180
21	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	9.1	179
22	Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018, 4, eaap9264.	10.3	178
23	Coal combustion aerosols: a field study. Environmental Science & Environmental	10.0	175
24	Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Scientific Reports, 2013, 3, 1460.	3.3	175
25	Synthesis of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. Nano Letters, 2011, 11, 4352-4356.	9.1	174
26	Preparation of Poly(N-isopropylacrylamide)-Monolayer-Protected Gold Clusters:Â Synthesis Methods, Core Size, and Thickness of Monolayer. Macromolecules, 2003, 36, 4526-4533.	4.8	170
27	Predominant (6,5) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst. Journal of the American Chemical Society, 2010, 132, 13994-13996.	13.7	164
28	Ambientâ€Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices. Advanced Functional Materials, 2015, 25, 6618-6626.	14.9	155
29	Amphiphilic Gold Nanoparticles Grafted with Poly(N-isopropylacrylamide) and Polystyrene. Macromolecules, 2005, 38, 2918-2926.	4.8	152
30	Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoO _{<i>x</i>} as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 7982-7985.	13.7	150
31	An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chemical Physics Letters, 2006, 417, 179-184.	2.6	144
32	Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4, 2302.	12.8	141
33	Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5395-5401.	4.6	141
34	A novel aerosol method for single walled carbon nanotube synthesis. Chemical Physics Letters, 2005, 402, 227-232.	2.6	136
35	Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. Journal of the American Chemical Society, 2011, 133, 5232-5235.	13.7	134
36	Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 8837-8846.	14.6	119

#	Article	IF	Citations
37	Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon, 2003, 41, 2711-2724.	10.3	118
38	Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. Journal of Agricultural and Food Chemistry, 2008, 56, 5717-5722.	5.2	114
39	Durability of carbon nanofiber (CNF) & Durability of carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells. Solid State Ionics, 2013, 231, 94-101.	2.7	111
40	A novel method for metal oxide nanowire synthesis. Nanotechnology, 2009, 20, 165603.	2.6	110
41	A novel cement-based hybrid material. New Journal of Physics, 2009, 11, 023013.	2.9	108
42	Investigations of NanoBud formation. Chemical Physics Letters, 2007, 446, 109-114.	2.6	107
43	Hydrogenation, Purification, and Unzipping of Carbon Nanotubes by Reaction with Molecular Hydrogen: Road to Graphane Nanoribbons. ACS Nano, 2011, 5, 5132-5140.	14.6	106
44	Comparison of Different Dilution Methods for Measuring Diesel Particle Emissions. Aerosol Science and Technology, 2004, 38, 12-23.	3.1	102
45	Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2020, 10, 4647-4658.	11.2	100
46	Carbon-sandwiched perovskite solar cell. Journal of Materials Chemistry A, 2018, 6, 1382-1389.	10.3	98
47	AEROSOL CHARACTERISATION IN MEDIUM-SPEED DIESEL ENGINES OPERATING WITH HEAVY FUEL OILS. Journal of Aerosol Science, 1999, 30, 771-784.	3.8	95
48	Volatilization of the Heavy Metals during Circulating Fluidized Bed Combustion of Forest Residue. Environmental Science & Envi	10.0	93
49	Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 1999, 75, 728-730.	3.3	92
50	A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 2013, 61, 1862-1871.	7.9	92
51	Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. Journal of Physical Chemistry C, 2017, 121, 25743-25749.	3.1	89
52	Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. International Journal of Pharmaceutics, 2004, 284, 13-21.	5.2	88
53	Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 2007, 45, 662-667.	10.3	86
54	Assembly of Singleâ€Walled Carbon Nanotubes on DNAâ€Origami Templates through Streptavidin–Biotin Interaction. Small, 2011, 7, 746-750.	10.0	86

#	Article	IF	CITATIONS
55	Spatially Resolved Transport Properties of Pristine and Doped Single-Walled Carbon Nanotube Networks. Journal of Physical Chemistry C, 2013, 117, 13324-13330.	3.1	86
56	Title is missing!. Journal of Nanoparticle Research, 2001, 3, 383-398.	1.9	85
57	Aerosol flow reactor method for synthesis of drug nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55, 357-360.	4.3	83
58	On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon, 2005, 43, 2066-2074.	10.3	83
59	Fly ash formation and deposition during fluidized bed combustion of willow. Journal of Aerosol Science, 1998, 29, 445-459.	3.8	82
60	Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 6346-6353.	14.6	82
61	The Use of NH ₃ to Promote the Production of Large-Diameter Single-Walled Carbon Nanotubes with a Narrow (<i>n,m</i>) Distribution. Journal of the American Chemical Society, 2011, 133, 1224-1227.	13.7	81
62	Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. Journal of Physical Chemistry C, 2011, 115, 23067-23073.	3.1	80
63	Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon, 2010, 48, 380-388.	10.3	78
64	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77
65	Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Research, 2011, 4, 807-815.	10.4	76
66	Transparent and conductive hybrid graphene/carbon nanotube films. Carbon, 2016, 100, 501-507.	10.3	76
67	Effect of Carbon Nanotube Aqueous Dispersion Quality on Mechanical Properties of Cement Composite. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	75
68	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	12.8	75
69	Linking growth mode to lengths of single-walled carbon nanotubes. Carbon, 2017, 113, 231-236.	10.3	75
70	Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 2018, 10, 9752-9759.	5.6	73
71	Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Letters, 2019, 19, 2223-2230.	9.1	72
72	Optical Properties of Thermally Responsive Amphiphilic Gold Nanoparticles Protected with Polymers. Langmuir, 2006, 22, 794-801.	3.5	71

#	Article	IF	Citations
73	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
74	High Quality GaAs Nanowires Grown on Glass Substrates. Nano Letters, 2012, 12, 1912-1918.	9.1	70
75	Core level binding energies of functionalized and defective graphene. Beilstein Journal of Nanotechnology, 2014, 5, 121-132.	2.8	70
76	Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 3415-3424.	7.1	69
77	Generation of nanometer-size fullerene particles via vapor condensation. Chemical Physics Letters, 1994, 218, 304-308.	2.6	68
78	A one step approach to B-doped single-walled carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 5676.	6.7	68
79	Controlled Hybrid Nanostructures through Proteinâ€Mediated Noncovalent Functionalization of Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 6446-6449.	13.8	67
80	Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale, 2018, 10, 6744-6750.	5.6	67
81	Submicron particle agglomeration by an electrostatic agglomerator. Journal of Electrostatics, 1995, 34, 367-383.	1.9	66
82	Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. Journal of Materials Chemistry A, 2014, 2, 11311-11318.	10.3	66
83	Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes. Scientific Reports, 2016, 6, 31348.	3.3	66
84	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 5216-5222.	10.3	65
85	Electron Transport in Two-Dimensional Arrays of Gold Nanocrystals Investigated by Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2004, 126, 7126-7132.	13.7	64
86	Selective growth of SWNTs on partially reduced monometallic cobalt catalyst. Chemical Communications, 2011, 47, 1219-1221.	4.1	64
87	Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction. Chemistry of Materials, 2012, 24, 1796-1801.	6.7	63
88	In Situ Study of Noncatalytic Metal Oxide Nanowire Growth. Nano Letters, 2014, 14, 5810-5813.	9.1	63
89	Highly individual SWCNTs for high performance thin film electronics. Carbon, 2016, 103, 228-234.	10.3	63
90	Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method. International Journal of Pharmaceutics, 2003, 263, 69-83.	5.2	62

#	Article	IF	Citations
91	Analysis of the Size Distribution of Single-Walled Carbon Nanotubes Using Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1143-1148.	4.6	62
92	High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental, 2014, 158-159, 233-241.	20.2	62
93	Controlled Redox of Lithium-lon Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 16553-16558.	13.7	61
94	Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water. Journal of Physical Chemistry B, 2001, 105, 11067-11075.	2.6	60
95	Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by <i>in Situ</i> i> Transmission Electron Microscopy. ACS Nano, 2017, 11, 4483-4493.	14.6	60
96	Polymeric acid-doped transparent carbon nanotube electrodes for organic solar cells with the longest doping durability. Journal of Materials Chemistry A, 2018, 6, 14553-14559.	10.3	60
97	Foldable Perovskite Solar Cells Using Carbon Nanotubeâ€Embedded Ultrathin Polyimide Conductor. Advanced Science, 2021, 8, 2004092.	11.2	60
98	A New Thermophoretic Precipitator for Collection of Nanometer-Sized Aerosol Particles. Aerosol Science and Technology, 2005, 39, 1064-1071.	3.1	59
99	Studies on Mechanism of Single-Walled Carbon Nanotube Formation. Journal of Nanoscience and Nanotechnology, 2006, 6, 1233-1246.	0.9	59
100	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	10.4	59
101	Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films. Journal of the American Chemical Society, 2018, 140, 9797-9800.	13.7	59
102	Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon, 2014, 78, 130-136.	10.3	58
103	Diameter and chiral angle distribution dependencies on the carbon precursors in surface-grown single-walled carbon nanotubes. Nanoscale, 2012, 4, 7394.	5.6	57
104	Aerosol feeding of catalyst precursor for CNT synthesis and highly conductive and transparent film fabrication. Chemical Engineering Journal, 2014, 255, 134-140.	12.7	57
105	Scalable and Solidâ€State Redox Functionalization of Transparent Singleâ€Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells. Advanced Energy Materials, 2017, 7, 1700449.	19.5	57
106	Ash formation during fluidized-bed incineration of paper mill waste sludge. Journal of Aerosol Science, 1998, 29, 461-480.	3.8	55
107	Carbon nanotube synthesis from alcohols by a novel aerosol method. Journal of Nanoparticle Research, 2006, 8, 465-475.	1.9	55
108	Synthesis and characterization of copper sulfide nanocrystallites with low sintering temperatures. Journal of Materials Chemistry, 2008, 18, 3200.	6.7	55

#	Article	IF	Citations
109	Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 2011, 49, 4636-4643.	10.3	55
110	Photon-Drag Effect in Single-Walled Carbon Nanotube Films. Nano Letters, 2012, 12, 77-83.	9.1	55
111	Investigations on particle surface characteristics vs. dispersion behaviour of l-leucine coated carrier-free inhalable powders. International Journal of Pharmaceutics, 2010, 385, 79-85.	5.2	53
112	Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source. Carbon, 2016, 108, 521-528.	10.3	53
113	Carbon nanotubes to outperform metal electrodes in perovskite solar cells <i>via</i> dopant engineering and hole-selectivity enhancement. Journal of Materials Chemistry A, 2020, 8, 11141-11147.	10.3	51
114	Numerical simulation of vapour-aerosol dynamics in combustion processes. Journal of Aerosol Science, 1994, 25, 429-446.	3.8	50
115	Synthesis of Carbon Nanotubes and Nanofibers on Silica and Cement Matrix Materials. Journal of Nanomaterials, 2009, 2009, 1-4.	2.7	50
116	Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1831.	2.9	50
117	Low temperature growth of SWNTs on a nickel catalyst by thermal chemical vapor deposition. Nano Research, 2011, 4, 334-342.	10.4	50
118	Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon, 2019, 149, 318-327.	10.3	50
119	Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37, 101081.	11.9	50
120	Effect of Chlorine and Sulfur on Fine Particle Formation in Pilot-Scale CFBC of Biomass. Energy & Energy & Fuels, 2006, 20, 61-68.	5.1	48
121	Electrical Agglomeration of Aerosol Particles in an Alternating Electric Field. Aerosol Science and Technology, 1995, 22, 181-189.	3.1	45
122	Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology, 2009, 20, 085201.	2.6	45
123	Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale, 2017, 9, 17601-17609.	5.6	45
124	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
125	Integration of single-walled carbon nanotubes into polymer films by thermo-compression. Chemical Engineering Journal, 2008, 136, 409-413.	12.7	43
126	Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances. Chemistry of Materials, 2011, 23, 2201-2208.	6.7	43

#	Article	IF	Citations
127	Precise Determination of the Threshold Diameter for a Single-Walled Carbon Nanotube To Collapse. ACS Nano, 2014, 8, 9657-9663.	14.6	43
128	Thin multilayer CdS/ZnS films grown by SILAR technique. Applied Surface Science, 1997, 120, 58-64.	6.1	42
129	Dry and Direct Deposition of Aerosol-Synthesized Single-Walled Carbon Nanotubes by Thermophoresis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20738-20747.	8.0	42
130	Growth kinetics of single-walled carbon nanotubes with a (2 <i>n</i> , <i>n</i>) chirality selection. Science Advances, 2019, 5, eaav9668.	10.3	42
131	Direct Synthesis of Carbon Nanofibers on Cement Particles. Transportation Research Record, 2010, 2142, 96-101.	1.9	41
132	Intact Nanoparticulate Indomethacin in Fast-Dissolving Carrier Particles by Combined Wet Milling and Aerosol Flow Reactor Methods. Pharmaceutical Research, 2011, 28, 2403-2411.	3.5	41
133	Chiralityâ€Dependent Reactivity of Individual Singleâ€Walled Carbon Nanotubes. Small, 2013, 9, 1379-1386.	10.0	41
134	CO dissociation and CO+O reactions on a nanosized iron cluster. Nano Research, 2009, 2, 660-670.	10.4	40
135	Controlled Synthesis of Single-Walled Carbon Nanotubes in an Aerosol Reactor. Journal of Physical Chemistry C, 2011, 115, 7309-7318.	3.1	40
136	Synthesis of ZnO tetrapods for flexible and transparent UV sensors. Nanotechnology, 2012, 23, 095502.	2.6	40
137	Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in Current Chemistry, 2017, 375, 90.	5.8	40
138	Multifunctional Effect of <i>p</i> â€Doping, Antireflection, and Encapsulation by Polymeric Acid for High Efficiency and Stable Carbon Nanotubeâ€Based Silicon Solar Cells. Advanced Energy Materials, 2020, 10, 1902389.	19.5	40
139	Ultrafast Optoelectronic Processes in 1D Radial van der Waals Heterostructures: Carbon, Boron Nitride, and MoS ₂ Nanotubes with Coexisting Excitons and Highly Mobile Charges. Nano Letters, 2020, 20, 3560-3567.	9.1	40
140	Investigations on the Humidity-Induced Transformations of Salbutamol Sulphate Particles Coated with l-Leucine. Pharmaceutical Research, 2008, 25, 2250-2261.	3.5	39
141	Organic memory using [6,6]-phenyl-C61butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology, 2008, 19, 035203.	2.6	39
142	Combined Raman Spectroscopy and Transmission Electron Microscopy Studies of a NanoBud Structure. Journal of the American Chemical Society, 2008, 130, 7188-7189.	13.7	39
143	Adsorption Behavior of Perfluorinated Sulfonic Acid Ionomer on Highly Graphitized Carbon Nanofibers and Their Thermal Stabilities. Journal of Physical Chemistry C, 2014, 118, 10814-10823.	3.1	39
144	Oxygen Ordering and Mobility in YBaCo ₄ O _{7+Î} . Journal of the American Chemical Society, 2009, 131, 4880-4883.	13.7	38

#	Article	IF	Citations
145	Mechanistic investigation of ZnO nanowire growth. Applied Physics Letters, 2009, 95, 183114.	3.3	38
146	The ash formation during co-combustion of wood and sludge in industrial fluidized bed boilers. Fuel Processing Technology, 1998, 54, 79-94.	7.2	37
147	Aerosolization behavior of carrier-free l-leucine coated salbutamol sulphate powders. International Journal of Pharmaceutics, 2009, 365, 18-25.	5.2	37
148	Atomic layer etching of gallium nitride (0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	37
149	Single-walled carbon nanotube networks for ethanol vapor sensing applications. Nano Research, 2013, 6, 77-86.	10.4	36
150	Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy, 2014, 65, 612-620.	8.8	36
151	Optical properties of singleâ€walled carbon nanotubes filled with CuCl by gasâ€phase technique. Physica Status Solidi (B): Basic Research, 2014, 251, 2466-2470.	1.5	36
152	Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS Nano, 2020, 14, 4298-4305.	14.6	36
153	Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts. Applied Catalysis B: Environmental, 2015, 162, 289-299.	20.2	35
154	Photoluminescence from Single-Walled MoS ₂ Nanotubes Coaxially Grown on Boron Nitride Nanotubes. ACS Nano, 2021, 15, 8418-8426.	14.6	35
155	One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	35
156	Dry Functionalization and Doping of Single-Walled Carbon Nanotubes by Ozone. Journal of Physical Chemistry C, 2015, 119, 27821-27828.	3.1	34
157	Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Analytical Chemistry, 2018, 90, 2517-2525.	6.5	34
158	Transparent and Freestanding Singleâ€Walled Carbon Nanotube Films Synthesized Directly and Continuously via a Blown Aerosol Technique. Advanced Materials, 2020, 32, e2004277.	21.0	34
159	Polymeric Drug Nanoparticles Prepared by an Aerosol Flow Reactor Method. Pharmaceutical Research, 2004, 21, 136-143.	3.5	33
160	Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid and Polymer Science, 2010, 288, 543-553.	2.1	33
161	Thermoresponsive Nanoparticles of Self-Assembled Block Copolymers as Potential Carriers for Drug Delivery and Diagnostics. Biomacromolecules, 2015, 16, 2750-2756.	5.4	33
162	Simultaneous Detection of Morphine and Codeine in the Presence of Ascorbic Acid and Uric Acid and in Human Plasma at Nafion Single-Walled Carbon Nanotube Thin-Film Electrode. ACS Omega, 2019, 4, 17726-17734.	3.5	33

#	Article	IF	Citations
163	A Novel Gas Phase Method for the Combined Synthesis and Coating of Pharmaceutical Particles. Pharmaceutical Research, 2008, 25, 242-245.	3.5	32
164	A Review of the Terahertz Conductivity and Photoconductivity of Carbon Nanotubes and Heteronanotubes. Advanced Optical Materials, 2021, 9, 2101042.	7.3	32
165	Mass and trace element size distributions of aerosols emitted by a hospital refuse incinerator. Atmospheric Environment Part A General Topics, 1990, 24, 423-429.	1.3	31
166	Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech, 2004, 5, 129-137.	3.3	31
167	A method of moments based CFD model for polydisperse aerosol flows with strong interphase mass and heat transfer. Computers and Fluids, 2006, 35, 762-780.	2.5	31
168	Self-assembly of PS-b-P4VP block copolymers of varying architectures in aerosol nanospheres. Soft Matter, 2013, 9, 1492-1499.	2.7	31
169	Strong surface passivation of GaAs nanowires with ultrathin InP and GaP capping layers. Applied Physics Letters, 2014, 105, .	3.3	31
170	Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies. Carbon, 2014, 71, 218-228.	10.3	31
171	Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Analytical Chemistry, 2020, 92, 8218-8227.	6.5	31
172	Direct synthesis of carbon nanofibers on the surface of copper powder. Carbon, 2010, 48, 4559-4562.	10.3	30
173	In Situ TEM Observation of MgO Nanorod Growth. Crystal Growth and Design, 2010, 10, 414-417.	3.0	30
174	Nonlinear optical properties of carbon nanotube hybrids in polymer dispersions. Materials Chemistry and Physics, 2012, 133, 992-997.	4.0	30
175	Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon, 2013, 52, 590-594.	10.3	30
176	Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 2014, 156-157, 341-349.	20.2	30
177	A Novel Method for Continuous Synthesis of ZnO Tetrapods. Journal of Physical Chemistry C, 2015, 119, 16366-16373.	3.1	30
178	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. Journal of Physical Chemistry C, 2021, 125, 973-988.	3.1	30
179	Synthesis of -leucine nanoparticles via physical vapor deposition at varying saturation conditions. Journal of Aerosol Science, 2007, 38, 1172-1184.	3.8	29
180	Electrochemical purification of carbon nanotube electrodes. Electrochemistry Communications, 2009, 11, 1535-1538.	4.7	29

#	Article	IF	CITATIONS
181	Protective capping and surface passivation of III-V nanowires by atomic layer deposition. AIP Advances, 2016, 6, .	1.3	29
182	High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Research, 2020, 13, 112-120.	10.4	29
183	Alkali Salt Ash Formation in Four Finnish Industrial Recovery Boilers. Energy & 2007, 1999, 13, 778-795.	5.1	28
184	Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires. Carbon, 2012, 50, 4294-4297.	10.3	28
185	High-Mobility, Flexible Carbon Nanotube Thin-Film Transistors Fabricated by Transfer and High-Speed Flexographic Printing Techniques. Applied Physics Express, 2013, 6, 085101.	2.4	28
186	Coronene Encapsulation in Singleâ€Walled Carbon Nanotubes: Stacked Columns, Peapods, and Nanoribbons. ChemPhysChem, 2014, 15, 1660-1665.	2.1	28
187	Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film. Advanced Materials, 2017, 29, 1605978.	21.0	28
188	Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon, 2018, 128, 249-256.	10.3	28
189	Single-Walled Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Applied Nano Materials, 2020, 3, 1203-1212.	5.0	28
190	Modification of the University of Washington Mark 5 in-stack impactor. Journal of Aerosol Science, 1989, 20, 813-827.	3.8	27
191	Mobility size development and the crystallization path during aerosol decomposition synthesis of TiO2 particles. Journal of Aerosol Science, 2001, 32, 615-630.	3.8	27
192	Nanoparticle Synthesis by Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Oxygen. Aerosol Science and Technology, 2002, 36, 899-911.	3.1	27
193	Semiempirical dynamic phase diagrams of nanocrystalline products during copper (II) acetylacetonate vapour decomposition. Chemical Physics Letters, 2003, 367, 771-777.	2.6	27
194	Flexible optically transparent single-walled carbon nanotube electrodes for UV–Vis absorption spectroelectrochemistry. Electrochemistry Communications, 2009, 11, 442-445.	4.7	27
195	Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth. Nanoscale, 2015, 7, 20284-20289.	5 . 6	27
196	Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes. Carbon, 2016, 110, 243-248.	10.3	27
197	Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies. Journal of Physical Chemistry C, 2019, 123, 13136-13140.	3.1	27
198	Ash Vaporization in Circulating Fluidized Bed Coal Combustion. Aerosol Science and Technology, 1996, 24, 135-150.	3.1	26

#	Article	IF	Citations
199	The effect of Mg-based additive on aerosol characteristics in medium-speed diesel engines operating with residual fuel oils. Journal of Aerosol Science, 2002, 33, 967-981.	3.8	26
200	CVD synthesis and radial deformations of large diameter single-walled CNTs. Current Applied Physics, 2009, 9, 301-305.	2.4	26
201	Ultrafast and High-Contrast Electrochromism on Bendable Transparent Carbon Nanotube Electrodes. Journal of Physical Chemistry Letters, 2010, 1, 1367-1371.	4.6	26
202	Insights into chirality distributions of single-walled carbon nanotubes grown on different Co _x Mg _{1â^'x} O solid solutions. Journal of Materials Chemistry A, 2014, 2, 5883-5889.	10.3	26
203	Nonlinear microscopy using cylindrical vector beams: Applications to three-dimensional imaging of nanostructures. Optics Express, 2017, 25, 12463.	3.4	26
204	Acid-Triggered Colorimetric Hydrophobic Benzyl Alcohols for Soluble Tag-Assisted Liquid-Phase Synthesis. Organic Letters, 2015, 17, 4264-4267.	4.6	25
205	Carbon Nanotube Mask Filters and Their Hydrophobic Barrier and Hyperthermic Antiviral Effects on SARS-CoV-2. ACS Applied Nano Materials, 2021, 4, 8135-8144.	5.0	25
206	Charging of Aerosol Products during Ferrocene Vapor Decomposition in N ₂ and CO Atmospheres. Journal of Physical Chemistry C, 2008, 112, 5762-5769.	3.1	24
207	The effect of Nafion content in a graphitized carbon nanofiber-based anode for the direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 19082-19091.	7.1	24
208	Flexible metal-free counter electrode for dye solar cells based on conductive polymer and carbon nanotubes. Journal of Electroanalytical Chemistry, 2012, 683, 70-74.	3.8	24
209	Nitrogen-doped graphene with enhanced oxygen reduction activity produced by pyrolysis of graphene functionalized with imidazole derivatives. International Journal of Hydrogen Energy, 2014, 39, 12749-12756.	7.1	24
210	Largeâ€Diameter Carbon Nanotube Transparent Conductor Overcoming Performance–Yield Tradeoff. Advanced Functional Materials, 2022, 32, 2103397.	14.9	24
211	Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 24  μm. Optics Letters, 2019, 44, 1750.	3.3	24
212	Comparison of dye solar cell counter electrodes based on different carbon nanostructures. Thin Solid Films, 2011, 519, 8125-8134.	1.8	23
213	Aluminum-Induced Photoluminescence Red Shifts in Core–Shell GaAs/Al _{<i>x</i>} Ga _{1–<i>x</i>} As Nanowires. Nano Letters, 2013, 13, 3581-3588.	9.1	23
214	Tailorable secondâ€harmonic generation from an individual nanowire using spatially phaseâ€shaped beams. Laser and Photonics Reviews, 2017, 11, 1600175.	8.7	23
215	High temperature growth of single-walled carbon nanotubes with a narrow chirality distribution by tip-growth mode. Chemical Engineering Journal, 2018, 341, 344-350.	12.7	23
216	Gas phase synthesis of metallic and bimetallic catalyst nanoparticles by rod-to-tube type spark discharge generator. Journal of Aerosol Science, 2018, 123, 208-218.	3.8	23

#	Article	IF	Citations
217	High-performance single-walled carbon nanotube transparent conducting film fabricated by using low feeding rate of ethanol solution. Royal Society Open Science, 2018, 5, 180392.	2.4	23
218	Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene. ACS Nano, 2019, 13, 11522-11529.	14.6	23
219	On the Determination of Continuous Submicrometer Liquid Aerosol-Size Distributions with Low Pressure Impactors. Aerosol Science and Technology, 1992, 16, 171-197.	3.1	22
220	Study of the dispersion behaviour of l-leucine containing microparticles synthesized with an aerosol flow reactor method. Powder Technology, 2007, 177, 125-132.	4.2	22
221	Incremental Variation in the Number of Carbon Nanotube Walls with Growth Temperature. Journal of Physical Chemistry C, 2009, 113, 2212-2218.	3.1	22
222	Temperature Dependent Raman Spectra of Carbon Nanobuds. Journal of Physical Chemistry C, 2010, 114, 13540-13545.	3.1	22
223	Atomic Layer Deposition of Aluminum Oxide Films for Carbon Nanotube Network Transistor Passivation. Journal of Nanoscience and Nanotechnology, 2011, 11, 8818-8825.	0.9	22
224	Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. International Journal of Pharmaceutics, 2013, 441, 248-254.	5.2	22
225	A robust CoxMg1-xO catalyst for predominantly growing (6, 5) single-walled carbon nanotubes. Carbon, 2019, 153, 389-395.	10.3	22
226	Roles of sulfur in floating-catalyst CVD growth of single-walled carbon nanotubes for transparent conductive film applications. Chemical Engineering Journal, 2019, 378, 122010.	12.7	22
227	Scalable growth of single-walled carbon nanotubes with a highly uniform structure. Nanoscale, 2020, 12, 12263-12267.	5.6	22
228	Initial competing chemical pathways during floating catalyst chemical vapor deposition carbon nanotube growth. Journal of Applied Physics, 2021, 129, .	2.5	22
229	Robust Bessel-function-based method for determination of the(n,m)indices of single-walled carbon nanotubes by electron diffraction. Physical Review B, 2006, 74, .	3.2	21
230	High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics, 2008, 10, 103019.	2.9	21
231	Selective differential ammonia gas sensor based on Nâ€doped SWCNT films. Physica Status Solidi (B): Basic Research, 2011, 248, 2462-2466.	1.5	21
232	Lithography-free fabrication of carbon nanotube network transistors. Nanotechnology, 2011, 22, 065303.	2.6	21
233	Preparation Methods for Multiâ€Walled Carbon Nanotube Supported Palladium Catalysts. ChemCatChem, 2012, 4, 2055-2061.	3.7	21
234	Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator. Electrochimica Acta, 2013, 111, 206-209.	5.2	21

#	Article	IF	Citations
235	Dryâ€Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells. ChemSusChem, 2017, 10, 434-441.	6.8	21
236	A static particle size selective bioaerosol sampler for the ambient atmosphere. Journal of Aerosol Science, 1989, 20, 829-838.	3.8	20
237	Spontaneous Charging of Single-Walled Carbon Nanotubes:  A Novel Strategy for the Selective Substrate Deposition of Individual Tubes at Ambient Temperature. Chemistry of Materials, 2006, 18, 5052-5057.	6.7	20
238	Ion-Induced Nucleation of Dibutyl Phthalate Vapors on Spherical and Nonspherical Singly and Multiply Charged Polyethylene Glycol Ions. Journal of Physical Chemistry A, 2008, 112, 1133-1138.	2.5	20
239	Ethanol-Promoted Fabrication of Tungsten Oxide Nanobelts with Defined Crystal Orientation. Journal of Physical Chemistry C, 2010, 114, 10-14.	3.1	20
240	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	3.6	20
241	Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films. Advanced Materials Interfaces, 2018, 5, 1801209.	3.7	20
242	Joint effect of ethylene and toluene on carbon nanotube growth. Carbon, 2022, 189, 474-483.	10.3	20
243	Nitrogenâ€doped SWCNT synthesis using ammonia and carbon monoxide. Physica Status Solidi (B): Basic Research, 2010, 247, 2726-2729.	1.5	19
244	Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein Journal of Nanotechnology, 2012, 3, 692-702.	2.8	19
245	Microscale distribution of Ti-based conversion layer on hot dip galvanized steel. Surface and Coatings Technology, 2012, 206, 4173-4179.	4.8	19
246	Temperature dependent performance and catalyst layer properties of PtRu supported on modified few-walled carbon nanotubes for the alkaline direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2017, 793, 48-57.	3.8	19
247	Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure. ACS Nano, 2018, 12, 8512-8519.	14.6	19
248	Carbon Nanotube Electrodeâ€Based Perovskite–Silicon Tandem Solar Cells. Solar Rrl, 2020, 4, 2000353.	5.8	19
249	Theoretical and experimental study of particle collection characteristics of high-velocity multijet cascade impactors. Journal of Aerosol Science, 1986, 17, 506-510.	3.8	18
250	Gas-phase synthesis of l-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles. Powder Technology, 2008, 187, 289-297.	4.2	18
251	Sublimation and vapour pressure estimation of l-leucine using thermogravimetric analysis. Thermochimica Acta, 2009, 482, 17-20.	2.7	18
252	Thermally Sensitive Block Copolymer Particles Prepared via Aerosol Flow Reactor Method: Morphological Characterization and Behavior in Water. Macromolecules, 2012, 45, 8401-8411.	4.8	18

#	Article	IF	Citations
253	Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes. Organic Electronics, 2016, 30, 36-39.	2.6	18
254	Harmonic analysis of surface instability patterns on colloidal particles. Soft Matter, 2018, 14, 3387-3396.	2.7	18
255	Colors of Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2021, 33, e2006395.	21.0	18
256	Intertube Excitonic Coupling in Nanotube Van der Waals Heterostructures. Advanced Functional Materials, 2022, 32, 2104969.	14.9	18
257	Zero-phonon lines in the photoluminescence spectra ofMgO:Mn2+nanocrystals. Physical Review B, 2003, 68, .	3.2	17
258	Novel catalyst particle production method for CVD growth of single- and double-walled carbon nanotubes. Carbon, 2006, 44, 1604-1608.	10.3	17
259	Combined synthesis and inÂsitu coating of nanoparticles in the gas phase. Journal of Nanoparticle Research, 2008, 10, 121-130.	1.9	17
260	Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with I-leucine in the gas phase. International Journal of Pharmaceutics, 2008, 358, 256-262.	5.2	17
261	Femtosecond Four-Wave-Mixing Spectroscopy of Suspended Individual Semiconducting Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 6780-6786.	14.6	17
262	Hierarchical Structures of Hydrogen-Bonded Liquid-Crystalline Side-Chain Diblock Copolymers in Nanoparticles. Macromolecules, 2012, 45, 8743-8751.	4.8	17
263	Injected nanoparticles: The combination of experimental systems to assess cardiovascular adverse effects. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 64-72.	4.3	17
264	Hydrophobic benzyl amines as supports for liquid-phase C-terminal amidated peptide synthesis: application to the preparation of ABT-510. Journal of Peptide Science, 2015, 21, 691-695.	1.4	17
265	Aerosolization, Drug Permeation and Cellular Interaction of Dry Powder Pulmonary Formulations of Corticosteroids with Hydroxypropyl-Î ² -Cyclodextrin as a Solubilizer. Pharmaceutical Research, 2017, 34, 25-35.	3.5	17
266	Investigation of charge interaction between fullerene derivatives and singleâ€walled carbon nanotubes. InformaÄnÃ-Materiály, 2019, 1, 559-570.	17.3	17
267	Can Single-Walled Carbon Nanotube Diameter Be Defined by Catalyst Particle Diameter?. Journal of Physical Chemistry C, 2019, 123, 30305-30317.	3.1	17
268	Selective Covalent Functionalization of Carbon Nanobuds. Chemistry of Materials, 2010, 22, 4347-4349.	6.7	16
269	Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride. Scientific Reports, 2012, 2, 971.	3.3	16
270	Influence of different carbon nanostructures on the electrocatalytic activity and stability of Pt supported electrocatalysts. International Journal of Hydrogen Energy, 2014, 39, 8215-8224.	7.1	16

#	Article	IF	Citations
271	Is there chiral correlation between graphitic layers in double-wall carbon nanotubes?. Carbon, 2019, 144, 147-151.	10.3	16
272	Field Emission Properties of Metal Oxide Nanowires. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 35-40.	0.5	16
273	Phenomenological description of mobility of nm- and sub-nm-sized charged aerosol particles in electric field. Journal of Aerosol Science, 2005, 36, 1125-1143.	3.8	15
274	CO Disproportionation on a Nanosized Iron Cluster. Journal of Physical Chemistry C, 2009, 113, 12939-12942.	3.1	15
275	Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth. Physical Chemistry Chemical Physics, 2011, 13, 11303.	2.8	15
276	Singleâ€walled carbon nanotubes as a template for coronene stack formation. Physica Status Solidi (B): Basic Research, 2014, 251, 2372-2377.	1.5	15
277	A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy. RSC Advances, 2015, 5, 102974-102980.	3.6	15
278	STUDIES OF ADHESION OF METAL PARTICLES TO SILICA PARTICLES BASED ON ZETA POTENTIAL MEASUREMENTS. Journal of Dispersion Science and Technology, 1999, 20, 715-722.	2.4	14
279	Novel carbon nanotube network deposition technique for electronic device fabrication. Physica Status Solidi (B): Basic Research, 2008, 245, 2272-2275.	1.5	14
280	CVD Synthesis of Hierarchical 3D MWCNT/Carbon-Fiber Nanostructures. Journal of Nanomaterials, 2008, 2008, 1-7.	2.7	14
281	High quality SWCNT synthesis in the presence of NH ₃ using a vertical flow aerosol reactor. Physica Status Solidi (B): Basic Research, 2009, 246, 2507-2510.	1.5	14
282	Structure and Dissolution of l-Leucine-Coated Salbutamol Sulphate Aerosol Particles. AAPS PharmSciTech, 2012, 13, 707-712.	3.3	14
283	Growth and surface engineering of vertically-aligned low-wall-number carbon nanotubes. Carbon, 2012, 50, 4750-4754.	10.3	14
284	Broadband laser polarization control with aligned carbon nanotubes. Nanoscale, 2015, 7, 11199-11205.	5.6	14
285	Indium Tin Oxide-Free Small Molecule Organic Solar Cells Using Single-Walled Carbon Nanotube Electrodes. ECS Journal of Solid State Science and Technology, 2017, 6, M3181-M3184.	1.8	14
286	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	3.5	14
287	Experimental and Computational Investigation of Hydrogen Evolution Reaction Mechanism on Nitrogen Functionalized Carbon Nanotubes. ChemCatChem, 2018, 10, 3872-3882.	3.7	14
288	Non-doped and unsorted single-walled carbon nanotubes as carrier-selective, transparent, and conductive electrode for perovskite solar cells. MRS Communications, 2018, 8, 1058-1063.	1.8	14

#	Article	IF	CITATIONS
289	Electronâ€Beam Manipulation of Silicon Impurities in Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1901327.	14.9	14
290	Multiâ€Functional MoO ₃ Doping of Carbonâ€Nanotube Top Electrodes for Highly Transparent and Efficient Semiâ€Transparent Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	14
291	Kinematic Coagulation of Charged Droplets in an Alternating Electric Field. Aerosol Science and Technology, 1995, 23, 422-430.	3.1	13
292	TEM Imaging of Mass-selected Polymer Molecules. Journal of Nanoparticle Research, 2002, 4, 449-453.	1.9	13
293	The local study of a nanoBud structure. Physica Status Solidi (B): Basic Research, 2008, 245, 2047-2050.	1.5	13
294	New apparatus for studying powder deagglomeration. Powder Technology, 2008, 180, 164-171.	4.2	13
295	Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor. Journal of Sensors, 2012, 2012, 1-7.	1.1	13
296	Performance and early applications of a versatile double aberration-corrected JEOL-2200FS FEG TEM/STEM at Aalto University. Micron, 2012, 43, 545-550.	2.2	13
297	Drug permeation and cellular interaction of amino acid-coated drug combination powders for pulmonary delivery. International Journal of Pharmaceutics, 2016, 504, 89-97.	5.2	13
298	Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility. Carbon, 2022, 195, 92-100.	10.3	13
299	Simple immobilization of pyrroloquinoline quinone on few-walled carbon nanotubes. Electrochemistry Communications, 2010, 12, 1257-1260.	4.7	12
300	Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor. Journal of Solid State Electrochemistry, 2015, 19, 3139-3144.	2.5	12
301	Optical Study of Nanotube and Coronene Composites. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 16-22.	0.5	12
302	Scanning Anode Field Emission Microscopy of Nanocarbons. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 114-118.	0.5	12
303	Aerosol formation in real scale pulverized coal combustion. Journal of Aerosol Science, 1992, 23, 241-244.	3.8	11
304	On the determination of electrostatic precipitator efficiency by differential mobility analyzer. Journal of Aerosol Science, 1992, 23, 795-798.	3.8	11
305	A field study on the trace metal behaviour in atmospheric circulating fluidized-bed coal combustion. Proceedings of the Combustion Institute, 1994, 25, 201-209.	0.3	11
306	Polypeptide-Based Aerosol Nanoparticles: Self-Assembly and Control of Conformation by Solvent and Thermal Annealing. Biomacromolecules, 2014, 15, 2607-2615.	5.4	11

#	Article	IF	CITATIONS
307	Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28134-28141.	8.0	11
308	Fe Ti O based catalyst for large-chiral-angle single-walled carbon nanotube growth. Carbon, 2016, 107, 865-871.	10.3	11
309	Measurement of in-plane sheet thermal conductance of single-walled carbon nanotube thin films by steady-state infrared thermography. Japanese Journal of Applied Physics, 2018, 57, 075101.	1.5	11
310	Hybrid Lowâ€Dimensional Carbon Allotropes Formed in Gas Phase. Advanced Functional Materials, 2020, 30, 2005016.	14.9	11
311	MoS2-carbon nanotube heterostructure as efficient hole transporters and conductors in perovskite solar cells. Applied Physics Express, 2020, 13, 075009.	2.4	11
312	Reflectance Study of Pigment Slurries. Applied Spectroscopy, 2000, 54, 878-884.	2.2	10
313	ELECTROSPRAYING OF FERRITIN SOLUTIONS FOR THE PRODUCTION OF MONODISPERSE IRON OXIDE NANOPARTICLES. Chemical Engineering Communications, 2007, 194, 901-912.	2.6	10
314	Imaging conduction pathways in carbon nanotube network transistors by voltage-contrast scanning electron microscopy. Nanotechnology, 2011, 22, 265715.	2.6	10
315	Improvement of the mechanical properties of single-walled carbon nanotube networks by carbon plasma coatings. Carbon, 2013, 53, 50-61.	10.3	10
316	Identification of Nitrogen Dopants in Single-Walled Carbon Nanotubes by Scanning Tunneling Microscopy. ACS Nano, 2013, 7, 7219-7226.	14.6	10
317	Synthesis and lectin recognition of glycosylated amphiphilic nanoparticles. European Polymer Journal, 2014, 59, 282-289.	5.4	10
318	Wafer-Scale Thermophoretic Dry Deposition of Single-Walled Carbon Nanotube Thin Films. ACS Omega, 2018, 3, 1322-1328.	3.5	10
319	Cutting floating single-walled carbon nanotubes with a â€~CO2 blade'. Carbon, 2019, 143, 481-486.	10.3	10
320	Aerosol formation in coal combustion processes. Journal of Aerosol Science, 1991, 22, S451-S454.	3.8	9
321	Selective chemical functionalization of carbon nanobuds. Carbon, 2012, 50, 4171-4174.	10.3	9
322	Fabrication of highâ€mobility <i>n</i> â€type carbon nanotube thinâ€film transistors on plastic film. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1612-1615.	0.8	9
323	Fabrication of Dual-Type Nanowire Arrays on a Single Substrate. Nano Letters, 2015, 15, 1679-1683.	9.1	9
324	A technique for large-area position-controlled growth of GaAs nanowire arrays. Nanotechnology, 2016, 27, 135601.	2.6	9

#	Article	IF	Citations
325	Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. International Journal of Pharmaceutics, 2018, 544, 121-128.	5.2	9
326	Dense Carbon Nanotube Films as Transparent Electrodes in Lowâ€Voltage Polymer and All arbon Transistors. Advanced Electronic Materials, 2018, 4, 1700331.	5.1	9
327	Hybrid X-ray Spectroscopy-Based Approach To Acquire Chemical and Structural Information of Single-Walled Carbon Nanotubes with Superior Sensitivity. Journal of Physical Chemistry C, 2019, 123, 6114-6120.	3.1	9
328	A structure and activity relationship for single-walled carbon nanotube growth confirmed by <i>in situ</i> observations and modeling. Nanoscale, 2020, 12, 21923-21931.	5.6	9
329	Magnetization reversal measurements of size-selected iron oxide particles produced via an aerosol route. Applied Organometallic Chemistry, 1998, 12, 315-320.	3.5	8
330	Estimation of the wavelength-dependent effective refractive index of spherical plastic pigments in a liquid matrix. Applied Optics, 2001, 40, 5482.	2.1	8
331	Microstructure of iron particles reduced from silica-coated hematite in hydrogen. Advanced Powder Technology, 2005, 16, 621-637.	4.1	8
332	Single-walled carbon nanotube charging during bundling process in the gas phase. Physica Status Solidi (B): Basic Research, 2006, 243, 3234-3237.	1.5	8
333	Mechanism study of floating catalyst CVD synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2708-2712.	1.5	8
334	Hydrogenâ€Driven Collapse of C ₆₀ Inside Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2012, 51, 4435-4439.	13.8	8
335	Growth of single-walled carbon nanotubes with large chiral angles on rhodium nanoparticles. Nanoscale, 2013, 5, 10200.	5.6	8
336	GaAs nanowires grown on Al-doped ZnO buffer layer. Journal of Applied Physics, 2013, 114, .	2.5	8
337	Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film. Journal of Applied Physics, 2015, 117, 225302.	2.5	8
338	Aerosol synthesis of single-walled carbon nanotubes by tuning feeding flow configuration for transparent conducting films. Diamond and Related Materials, 2021, 120, 108716.	3.9	8
339	Effective refractive index of calcium carbonate pigment slurries by a surface-plasmon-resonance sensor. Dyes and Pigments, 2002, 52, 15-21.	3.7	7
340	CFD-Aerosol Modeling of the Effects of Wall Composition and Inlet Conditions on Carbon Nanotube Catalyst Particle Activity. Journal of Nanoscience and Nanotechnology, 2008, 8, 3803-3819.	0.9	7
341	Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials. Journal of Applied Physics, 2015, 118, 194306.	2.5	7
342	Synthesis and properties of ultra-long InP nanowires on glass. Nanotechnology, 2016, 27, 505606.	2.6	7

#	Article	IF	CITATIONS
343	Fast and Ultraclean Approach for Measuring the Transport Properties of Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1907150.	14.9	7
344	SWCNT@BNNT With 1D Van Der Waals Heterostructure With a High Optical Damage Threshold for Laser Mode-Locking. Journal of Lightwave Technology, 2021, 39, 5875-5883.	4.6	7
345	Electronic transitions of SWCNTs in comparison to GO on Mn ₃ O ₄ /TiO ₂ nanocomposites for hydrogen energy generation and solar photocatalysis. New Journal of Chemistry, 2021, 45, 2431-2442.	2.8	7
346	Electronic Structure and Size of TiO 2 Nanoparticles of Controlled Size Prepared by Aerosol Methods. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2002, 133, 849-857.	1.8	6
347	Corrosion studies with a new laboratory-scale system simulating large-scale diesel engines operating with residual fuels. Fuel Processing Technology, 2005, 86, 353-373.	7.2	6
348	Spontaneous charging of single-walled carbon nanotubes in the gas phase. Carbon, 2006, 44, 2099-2101.	10.3	6
349	Growth, dispersion, and electronic devices of nitrogenâ€doped singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2416-2419.	1.5	6
350	Direct synthesis of high-quality single-walled carbon nanotubes by the physical nucleation of iron nanoparticles in an atmospheric pressure carbon monoxide flow. Carbon, 2012, 50, 5343-5345.	10.3	6
351	A Novel Approach For Nanocarbon Composite Preparation. Materials Research Society Symposia Proceedings, 2012, 1454, 279-286.	0.1	6
352	Single-walled carbon nanotubes coated with ZnO by atomic layer deposition. Nanotechnology, 2016, 27, 485709.	2.6	6
353	Hot electron-induced electrochemiluminescence at cellulose derivatives-based composite electrodes. Journal of Electroanalytical Chemistry, 2019, 833, 349-356.	3.8	6
354	A semi-grand canonical kinetic Monte Carlo study of single-walled carbon nanotube growth. AIP Advances, 2021, 11, .	1.3	6
355	Molybdenum Disulfide/Doubleâ€Wall Carbon Nanotube Mixedâ€Dimensional Heterostructures. Advanced Materials Interfaces, 2022, 9, .	3.7	6
356	Mass and metal size distributions of municipal waste combustion aerosols. Journal of Aerosol Science, 1986, 17, 597-601.	3.8	5
357	Coagulation in an electrical agglomerator. Journal of Aerosol Science, 1992, 23, 75-78.	3.8	5
358	Geometrical analysis of superstructures in YBaCo4O8.5 by electron diffraction. Solid State Ionics, 2011, 204-205, 7-12.	2.7	5
359	Carbon Nanotube/Nanofibers and Graphite Hybrids for Li-Ion Battery Application. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	5
360	Crossâ€sectional highâ€resolution microscopy of thin pretreatment layers on hot dip galvanized steel. Surface and Interface Analysis, 2014, 46, 620-624.	1.8	5

#	Article	IF	CITATIONS
361	Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network. Journal of Applied Physics, 2016, 119, 185306.	2.5	5
362	Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition. Nanotechnology, 2016, 27, 085602.	2.6	5
363	Single-Walled Carbon Nanotube Thin Film with High Semiconducting Purity by Aerosol Etching toward Thin-Film Transistors. ACS Applied Nano Materials, 2021, 4, 9673-9679.	5.0	5
364	Key factors for ultra-high on/off ratio thin-film transistors using as-grown carbon nanotube networks. RSC Advances, 2022, 12, 16291-16295.	3.6	5
365	Development of the volatile metal aerosol sampler based on vaporization/condensation. Journal of Aerosol Science, 1986, 17, 516-519.	3.8	4
366	Production of L-Leucine Nanoparticles under Various Conditions Using an Aerosol Flow Reactor Method. Journal of Nanomaterials, 2008, 2008, 1-9.	2.7	4
367	Reinforcing randomly oriented transparent freestanding single-walled carbon nanotube films. Carbon, 2013, 62, 513-516.	10.3	4
368	Gas-phase synthesis of solid state DNA nanoparticles stabilized by l-leucine. International Journal of Pharmaceutics, 2013, 444, 155-161.	5.2	4
369	Dry-transferred single-walled carbon nanotube thin films for flexible and transparent heaters. Surfaces and Interfaces, 2022, 31, 101992.	3.0	4
370	The particle size characterization of combustion aerosols. Journal of Aerosol Science, 1989, 20, 1369-1372.	3.8	3
371	Aerosol behavior in coal combustion processes. Journal of Aerosol Science, 1990, 21, S741-S744.	3.8	3
372	Real time size distribution monitoring of power plant particle emissions. Journal of Aerosol Science, 1995, 26, S675-S676.	3.8	3
373	Aerosol Synthesis and Characterization of Ultrafine Fullerene Particles. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 599-627.	0.6	3
374	Corrosion studies with a new laboratory-scale system simulating large-scale diesel engines operating with residual fuels. Fuel Processing Technology, 2005, 86, 329-352.	7.2	3
375	Effect of CO2 and H2O on the synthesis of single-walled CNTs. Physica Status Solidi (B): Basic Research, 2006, 243, 3087-3090.	1.5	3
376	Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	3
377	Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects. Journal of Optics (United Kingdom), 2017, 19, 084011.	2.2	3
378	Nonlinear imaging of nanostructures using beams with binary phase modulation. Optics Express, 2017, 25, 10441.	3.4	3

#	Article	IF	CITATIONS
379	Suspended superconducting weak links from aerosol-synthesized single-walled carbon nanotubes. Nano Research, 2020, 13, 3433-3438.	10.4	3
380	Tunable Doping and Characterization of Single-Wall Carbon Nanotube Macrosystems for Electrode Material Applications. ACS Applied Nano Materials, 2021, 4, 3220-3231.	5.0	3
381	Aerosols from circulating fluidized bed coal combustion. Journal of Aerosol Science, 1991, 22, S467-S470.	3.8	2
382	GaAs Nanowire and Crystallite Growth on Amorphous Substrate from Metalorganic Precursors. Japanese Journal of Applied Physics, 2010, 49, 020213.	1.5	2
383	Carbon Nanotubes: Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film (Adv. Mater.) Tj ETQq1 I	l 0,784314 21.0	4 ₂ rgBT /Over
384	Singleâ€Walled Carbon Nanotubes: Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films (Adv. Mater. Interfaces 23/2018). Advanced Materials Interfaces, 2018, 5, 1870114.	3.7	2
385	Immunoassays Based on Hot Electron-Induced Electrochemiluminescence at Disposable Cell Chips with Printed Electrodes. Sensors, 2019, 19, 2751.	3.8	2
386	Phenomenological model of thermal transport in carbon nanotube and hetero-nanotube films. Nanotechnology, 2021, 32, 205708.	2.6	2
387	Studies on Ash Species Release during the Pyrolysis of Solid Fuels with a Heated Grid Reactor. , 1996, , 265-280.		2
388	Optoelectronic Performance of Nitrogen-Doped Single-Walled Carbon Nanotube Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 68-72.	0.5	2
389	Utilization of Multifunctional Environmentâ€Friendly Organic Dopants Inspired from Nature for Carbon Nanotubeâ€Based Planar Heterojunction Silicon Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	2
390	Electrical agglomeration of fly ash particles. Journal of Aerosol Science, 1992, 23, 783-786.	3.8	1
391	Fly Ash Deposition Onto the Convective Heat Exchangers During Combustion of Willow in a Circulating Fluidized Bed Boiler., 2002,, 541-553.		1
392	Lithography-free shell-substrate isolation for core–shell GaAs nanowires. Nanotechnology, 2016, 27, 275603.	2.6	1
393	Silicon Solar Cells: Multifunctional Effect of <i>p</i> êDoping, Antireflection, and Encapsulation by Polymeric Acid for High Efficiency and Stable Carbon Nanotubeâ€Based Silicon Solar Cells (Adv. Energy) Tj ETQq1	11 9. 78431	.4 rgBT /Ove
394	Carbon Nanotubes: Colors of Singleâ€Wall Carbon Nanotubes (Adv. Mater. 8/2021). Advanced Materials, 2021, 33, 2170060.	21.0	1
395	Can single-walled carbon nanotube diameter be defined by catalyst particle diameter?. Journal of Physical Chemistry C, 2019, 123, .	3.1	1

Intertube Excitonic Coupling in Nanotube Van der Waals Heterostructures (Adv. Funct. Mater.) Tj ETQq0 0 0 rgBT / 10 rg 50 62 10 rg 50 62 10 rg 60 rg 6

396

#	Article	IF	Citations
397	Field evaluation of a high-volume industrial aerosol filter. Journal of Aerosol Science, 1986, 17, 571-574.	3.8	0
398	On the inversion of submicron aerosol low pressure impactor data withthe method based on constrained regularization. Journal of Aerosol Science, 1991, 22, S271.	3.8	0
399	20 P 03 Comparison of micron and eve algorithms in the inversion of simulated and experimental impactor data. Journal of Aerosol Science, 1993, 24, S209-S210.	3.8	0
400	24 O 01 HTHP sampling of aerosol particles from pressurised fluidized bed gasification of coal. Journal of Aerosol Science, 1993, 24, S299-S300.	3.8	0
401	34 O 01 Sodium behaviour in coal combustion processes: The importance of homogeneous nucleation mechanism. Journal of Aerosol Science, 1993, 24, S369-S370.	3.8	0
402	46 O 02 Experimental study on the enrichment of trace elements in submicron particles in coal CFBC. Journal of Aerosol Science, 1993, 24, S589-S590.	3.8	0
403	16.P.02 The effect of black liquor characteristics on combustion aerosols in industrial recovery boilers. Journal of Aerosol Science, 1994, 25, 215-216.	3.8	0
404	22.O.01 The role of inorganic aerosols in combustion and emission control. Journal of Aerosol Science, 1994, 25, 321-322.	3.8	0
405	Response to comment on: "Phenomenological description of mobility of nm- and sub nm-sized charged aerosol particles in electric fieldâ€₃ Journal of Aerosol Science, 2006, 37, 115-118.	3.8	0
406	Electronic transport measurements and Raman spectroscopy on carbon nanotube devices. Physica Status Solidi (B): Basic Research, 2009, 246, 2853-2856.	1.5	0
407	Hybrid Single Walled Carbon Nanotube - Quantum Dot photosensors. , 2015, , .		0
408	Substitutional Si Doping of Graphene and Nanotubes through Ion Irradiation-Induced Vacancies. Microscopy and Microanalysis, 2019, 25, 1574-1575.	0.4	0
409	Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in Current Chemistry Collections, 2019, , 99-128.	0.5	0
410	Mode-Locked Oscillation of Cr:ZnS Laser using a Single Walled Carbon Nanotube Film with Resonant Absorption at 2.4 \hat{l} 4m., 2019, , .		0
411	TEM Verification of Optical Diameter Distribution Analysis for Nitrogen-Doped SWCNT Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 17-21.	0.5	0
412	Ash Particle Formation and Metal Behaviour During, Biomass Combustion in Fluidized Bed Boiler. Ceramic Transactions, 0, , 347-354.	0.1	0
413	Ash Transformations in the Real-Scale Pulverized Coal Combustion of South African and Colombian Coals., 1996,, 437-449.		0
414	Background-Free Second-Harmonic Generation Microscopy of Individual Carbon Nanotubes. , 2015, , .		0

ARTICLE IF CITATIONS

415 Sub 5-cycle pulse generation from mode-locked Cr:ZnS laser using mid-IR resonant SWCNTs., 2020,,... 0