Ketul R Chaudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8007077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of CYP2J2 provides protection against doxorubicin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H37-H46.	1.5	84
2	Marked Strain-Specific Differences in the SU5416 Rat Model of Severe Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 461-468.	1.4	77
3	Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. Journal of Molecular and Cellular Cardiology, 2009, 46, 867-875.	0.9	76
4	Cytochrome P450 enzymes and the heart. IUBMB Life, 2009, 61, 954-960.	1.5	68
5	Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analogue towards ischaemia reperfusion injury. British Journal of Pharmacology, 2011, 162, 897-907.	2.7	62
6	Mitochondria and the aging heart. Journal of Geriatric Cardiology, 2011, 8, 159-167.	0.2	53
7	Inhibition of Soluble Epoxide Hydrolase by trans-4- [4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid Is Protective Against Ischemia–Reperfusion Injury. Journal of Cardiovascular Pharmacology, 2010, 55, 67-73.	0.8	50
8	Medical Therapy for Heart Failure Associated With Pulmonary Hypertension. Circulation Research, 2019, 124, 1551-1567.	2.0	45
9	Role of B-type natriuretic peptide in epoxyeicosatrienoic acid-mediated improved post-ischaemic recovery of heart contractile function. Cardiovascular Research, 2009, 83, 362-370.	1.8	39
10	Novel soluble epoxide hydrolase inhibitor protects mitochondrial function following stress. Canadian Journal of Physiology and Pharmacology, 2012, 90, 811-823.	0.7	37
11	Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins and Other Lipid Mediators, 2013, 104-105, 8-17.	1.0	36
12	Role of PI3Kα and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection. Journal of Molecular and Cellular Cardiology, 2012, 53, 43-52.	0.9	35
13	Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovascular Research, 2019, 115, 788-799.	1.8	35
14	Proliferative Versus Degenerative Paradigms in Pulmonary Arterial Hypertension. Circulation Research, 2017, 120, 1237-1239.	2.0	32
15	Effect of Ischemia Reperfusion Injury and Epoxyeicosatrienoic Acids on Caveolin Expression in Mouse Myocardium. Journal of Cardiovascular Pharmacology, 2013, 61, 258-263.	0.8	22
16	Efficacy of treprostinil in the SU5416â€hypoxia model of severe pulmonary arterial hypertension: haemodynamic benefits are not associated with improvements in arterial remodelling. British Journal of Pharmacology, 2018, 175, 3976-3989.	2.7	20
17	Optimizing imaging of the rat pulmonary microvasculature by microâ€computed tomography. Pulmonary Circulation, 2019, 9, 1-9.	0.8	11
18	Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex. Journal of the American Heart Association. 2021. 10. e019488.	1.6	11

KETUL R CHAUDHARY

#	Article	IF	CITATIONS
19	Emphysema Is—at the Most—Only a Mild Phenotype in the Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1447-1450.	2.5	8
20	The Janus Faces of Bone Morphogenetic Protein 9 in Pulmonary Arterial Hypertension. Circulation Research, 2019, 124, 822-824.	2.0	7
21	The Adult Sprague-Dawley Sugen-Hypoxia Rat Is Still "the One:―A Model of Group 1 Pulmonary Hypertension: Reply to Le Cras and Abman. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 621-624.	2.5	4
22	Bioactive Compounds in Heart Disease. , 2013, , 431-442.		2
23	Taking the right ventricle to â€~task' in pulmonary hypertension: role of TASK1/KCNK3 in RV dysfunction. Cardiovascular Research, 2018, 114, 776-778.	1.8	2
24	Go with the (back) flow: what can retrograde perfusion teach us about arterial remodeling in pulmonary arterial hypertension?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L797-L798.	1.3	2
25	Fatty Acids and Cardiac Ischemia Reperfusion Injury. , 2016, , 39-83.		1
26	Single-cell matrix-supplemented hydrogel cocooning of endothelial progenitor cells improves retention and therapeutic efficacy in pulmonary arterial hypertension. Cytotherapy, 2018, 20, S113.	0.3	0