
Edward M Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8006842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Light-Stimulated Activities in the Retina via Transparent Graphene Electrodes. ACS Applied Bio Materials, 2022, 5, 305-312.	4.6	2
2	Expression of Sonic Hedgehog and pathway components in the embryonic mouse head: anatomical relationships between regulators of positive and negative feedback. BMC Research Notes, 2021, 14, 300.	1.4	2
3	Induction of a proliferative response in the zebrafish retina by injection of extracellular vesicles. Experimental Eye Research, 2020, 200, 108254.	2.6	8
4	Stimulation of Retinal Pigment Epithelium With an α7 nAChR Agonist Leads to Müller Glia Dependent Neurogenesis in the Adult Mammalian Retina. , 2019, 60, 570.		14
5	Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Developmental Cell, 2018, 44, 13-28.e3.	7.0	20
6	Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy for image-guided feedback of intraocular injections in mouse models. , 2018, , .		1
7	Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nature Communications, 2017, 8, 1603.	12.8	42
8	Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biology, 2017, 15, e2002257.	5.6	31
9	The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 $\hat{l}\pm\text{-enhancer}$ activity. ELife, 2017, 6, .	6.0	20
10	Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells. Neural Development, 2015, 10, 12.	2.4	9
11	The RNA Binding Protein Igf2bp1 Is Required for Zebrafish RGC Axon Outgrowth In Vivo. PLoS ONE, 2015, 10, e0134751.	2.5	16
12	Retinal pigment epithelium development, plasticity, and tissue homeostasis. Experimental Eye Research, 2014, 123, 141-150.	2.6	198
13	ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors. Development (Cambridge), 2013, 140, 2619-2631.	2.5	209
14	Lhx2 Balances Progenitor Maintenance with Neurogenic Output and Promotes Competence State Progression in the Developing Retina. Journal of Neuroscience, 2013, 33, 12197-12207.	3.6	67
15	CDC42 Is Required for Tissue Lamination and Cell Survival in the Mouse Retina. PLoS ONE, 2013, 8, e53806.	2.5	23
16	Vsx2 Controls Eye Organogenesis and Retinal Progenitor Identity Via Homeodomain and Non-Homeodomain Residues Required for High Affinity DNA Binding. PLoS Genetics, 2012, 8, e1002924.	3.5	50
17	<i>Cyclin D1</i> inactivation extends proliferation and alters histogenesis in the postnatal mouse retina. Developmental Dynamics, 2012, 241, 941-952.	1.8	23
18	Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function. BMC Neuroscience, 2011, 12, 98.	1.9	36

Edward M Levine

#	Article	IF	CITATIONS
19	<i>Lhx2</i> links the intrinsic and extrinsic factors that control optic cup formation. Development (Cambridge), 2009, 136, 3895-3906.	2.5	92
20	<i>Rlbp1</i> Promoter Drives Robust MuÌ́ller Glial GFP Expression in Transgenic Mice. , 2009, 50, 3996.		45
21	Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Development, 2009, 4, 15.	2.4	60
22	Expression patterns and cell cycle profiles of PCNA, MCM6, cyclin D1, cyclin A2, cyclin B1, and phosphorylated histone H3 in the developing mouse retina. Developmental Dynamics, 2008, 237, 672-682.	1.8	63
23	Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Research, 2008, 1192, 99-113.	2.2	62
24	Vsx2/Chx10 ensures the correct timing and magnitude of Hedgehog signaling in the mouse retina. Developmental Biology, 2008, 317, 560-575.	2.0	37
25	Defects in retinal pigment epithelium cell proliferation and retinal attachment in mutant mice with p27(Kip1) gene ablation. Molecular Vision, 2007, 13, 273-86.	1.1	21
26	Absence of Chx10Causes Neural Progenitors to Persist in the Adult Retina. , 2006, 47, 386.		33
27	Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Seminars in Cell and Developmental Biology, 2004, 15, 63-74.	5.0	65
28	Expression of the cyclin-dependent kinase inhibitor p27Kip1 by developing retinal pigment epithelium. Gene Expression Patterns, 2003, 3, 615-619.	0.8	13
29	Retinal remodeling triggered by photoreceptor degenerations. Journal of Comparative Neurology, 2003, 464, 1-16.	1.6	437
30	Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Developmental Dynamics, 2003, 226, 675-689.	1.8	120
31	Genetic rescue of cell number in a mouse model of microphthalmia:interactions between Chx10 and G1-phase cell cycle regulators. Development (Cambridge), 2003, 130, 539-552.	2.5	133
32	The Cyclin-Dependent Kinase Inhibitors p19Ink4d and p27Kip1 Are Coexpressed in Select Retinal Cells and Act Cooperatively to Control Cell Cycle Exit. Molecular and Cellular Neurosciences, 2002, 19, 359-374.	2.2	69
33	p27Kip1 Regulates Cell Cycle Withdrawal of Late Multipotent Progenitor Cells in the Mammalian Retina. Developmental Biology, 2000, 219, 299-314.	2.0	152
34	The nuclear receptor transcription factor, retinoid-related orphan receptor β, regulates retinal progenitor proliferation. Mechanisms of Development, 1998, 77, 149-164.	1.7	45
35	Sonic Hedgehog Promotes Rod Photoreceptor Differentiation in Mammalian Retinal Cells <i>In Vitro</i> . Journal of Neuroscience, 1997, 17, 6277-6288.	3.6	187
36	Vsx-1 andVsx-2: Two Chx10-like homeobox genes expressed in overlapping domains in the adult goldfish retina. Journal of Comparative Neurology, 1997, 387, 439-448.	1.6	48

EDWARD M LEVINE

#	Article	IF	CITATIONS
37	Vsx-1 andVsx-2: Differential expression of twoPaired-like homeobox genes during zebrafish and goldfish retinogenesis. Journal of Comparative Neurology, 1997, 388, 495-505.	1.6	97
38	Vsx1 and Vsx2: Two Chx10â€like homeobox genes expressed in overlapping domains in the adult goldfish retina. Journal of Comparative Neurology, 1997, 387, 439-448.	1.6	1
39	Vsx-1 and Vsx-2: Differential expression of two Paired-like homeobox genes during zebrafish and goldfish retinogenesis. , 1997, 388, 495.		1
40	Complex expression of keratins in goldfish optic nerve. Journal of Comparative Neurology, 1994, 340, 269-280.	1.6	27
41	Restricted expression of a new paired-class homeobox gene in normal and regenerating adult goldfish retina. Journal of Comparative Neurology, 1994, 348, 596-606.	1.6	83
42	Cloning of Multiple Forms of Goldfish Vimentin: Differential Expression in CNS. Journal of Neurochemistry, 1994, 63, 470-481.	3.9	14
43	Homeobox genes are expressed in the retina and brain of adult goldfish Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2729-2733.	7.1	50
44	Plasticin, a novel type III neurofilament protein from goldfish retina: Increased expression during optic nerve regeneration. Neuron, 1992, 9, 373-381.	8.1	56
45	Cloning of a type I keratin from goldfish optic nerve: differential expression of keratins during regeneration. Differentiation, 1992, 52, 33-43.	1.9	26
46	<i>Arap1</i> loss causes retinal pigment epithelium phagocytic dysfunction and subsequent photoreceptor death. DMM Disease Models and Mechanisms, 0, , .	2.4	1