Prakash Lakshmanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8006738/publications.pdf

Version: 2024-02-01

58 papers

2,467 citations

236925 25 h-index 214800 47 g-index

61 all docs

61 docs citations

times ranked

61

2364 citing authors

#	Article	IF	CITATIONS
1	Control of sucrose accumulation in sugarcane (<i>Saccharum</i> spp. hybrids) involves miRNAâ€mediated regulation of genes and transcription factors associated with sugar metabolism. GCB Bioenergy, 2022, 14, 173-191.	5 . 6	14
2	Mitigating magnesium deficiency for sustainable citrus production: A case study in Southwest China. Scientia Horticulturae, 2022, 295, 110832.	3.6	15
3	Global reactive nitrogen loss in orchard systems: A review. Science of the Total Environment, 2022, 821, 153462.	8.0	22
4	High-Throughput Sequencing-Based Analysis of Rhizosphere and Diazotrophic Bacterial Diversity Among Wild Progenitor and Closely Related Species of Sugarcane (Saccharum spp. Inter-Specific) Tj ETQq0 0 0 rg	gB 3.¢ Overl	ods 10 Tf 50
5	Sugar Tech Special Issue: History of Sugarcane Breeding, Germplasm Development and Related Molecular Research. Sugar Tech, 2022, 24, 1-3.	1.8	5
6	Transcriptome Profiling Reveals Genes Related to Sex Determination and Differentiation in Sugarcane Borer (Chilo sacchariphagus Bojer). Insects, 2022, 13, 500.	2.2	2
7	Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp.) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf 50
8	Genotypic variation in intrinsic transpiration efficiency correlates with sugarcane yield under rainfed and irrigated field conditions. Physiologia Plantarum, 2021, 172, 976-989.	5. 2	13
9	Identification of proteins and metabolic networks associated with sucrose accumulation in sugarcane (<i>Saccharum</i> spp. interspecific hybrids). Journal of Plant Interactions, 2021, 16, 166-178.	2.1	9
10	A transcriptomic analysis of sugarcane response to Leifsonia xyli subsp. xyli infection. PLoS ONE, 2021, 16, e0245613.	2.5	10
11	Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18—A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum. Frontiers in Microbiology, 2021, 12, 628376.	3.5	53
12	Exogenous melatonin maintains leaf quality of postharvest Chinese flowering cabbage by modulating respiratory metabolism and energy status. Postharvest Biology and Technology, 2021, 177, 111524.	6.0	65
13	Public–private partnership model for intensive maize production in China: A synergistic strategy for food security and ecosystem economic budget. Food and Energy Security, 2021, 10, e317.	4.3	5
14	A transcriptional repressor BrDof2.4 regulates protease genes involved in postharvest leaf senescence in Chinese flowering cabbage. Postharvest Biology and Technology, 2021, 181, 111680.	6.0	4
15	A NAC transcription factor BrNAC087 is involved in gibberellin-delayed leaf senescence in Chinese flowering cabbage. Postharvest Biology and Technology, 2021, 181, 111673.	6.0	14
16	Magnesium application reduced heavy metal-associated health risks and improved nutritional quality of field-grown Chinese cabbage. Environmental Pollution, 2021, 289, 117881.	7.5	13
17	Global transcriptome changes of elongating internode of sugarcane in response to mepiquat chloride. BMC Genomics, 2021, 22, 79.	2.8	9
18	Comparative analysis of protein and differential responses of defense-related gene and enzyme activity reveals the long-term molecular responses of sugarcane inoculated with <i>Sporisorium scitamineum</i>). Journal of Plant Interactions, 2021, 16, 12-29.	2.1	10

#	Article	IF	CITATIONS
19	Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms, 2021, 9, 2203.	3.6	23
20	Increased Provision of Bioavailable Mg through Vegetables Could Significantly Reduce the Growing Health and Economic Burden Caused by Mg Malnutrition. Foods, 2021, 10, 2513.	4.3	0
21	Quantitative Trait Loci Mapping and Development of KASP Marker Smut Screening Assay Using High-Density Genetic Map and Bulked Segregant RNA Sequencing in Sugarcane (Saccharum spp.). Frontiers in Plant Science, 2021, 12, 796189.	3.6	8
22	Root-Derived Endophytic Diazotrophic Bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Frontiers in Microbiology, 2021, 12, 774707.	3.5	17
23	Enhanced Activity of Genes Associated With Photosynthesis, Phytohormone Metabolism and Cell Wall Synthesis Is Involved in Gibberellin-Mediated Sugarcane Internode Growth. Frontiers in Genetics, 2020, 11, 570094.	2.3	14
24	Transcriptome Profiling Provides Molecular Insights into Auxin-Induced Adventitious Root Formation in Sugarcane (Saccharum spp. Interspecific Hybrids) Microshoots. Plants, 2020, 9, 931.	3.5	14
25	MabZIP74 interacts with MaMAPK11-3 to regulate the transcription of MaACO1/4 during banana fruit ripening. Postharvest Biology and Technology, 2020, 169, 111293.	6.0	19
26	Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis. Food Research International, 2020, 138, 109790.	6.2	75
27	Limited contribution of water availability in genotypeâ€byâ€environment interaction in sugarcane yield and yield components. Journal of Agronomy and Crop Science, 2020, 206, 665-678.	3.5	3
28	Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp BMC Plant Biology, 2020, 20, 220.	3.6	80
29	Involvement of BrNAC041 in ABA-GA antagonism in the leaf senescence of Chinese flowering cabbage. Postharvest Biology and Technology, 2020, 168, 111254.	6.0	17
30	Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Frontiers in Microbiology, 2020, 11, 600417.	3.5	39
31	Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biology, 2019, 19, 285.	3.6	49
32	Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFsâ€mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 2019, 67, e12570.	7.4	128
33	High-Throughput Phenotyping of Indirect Traits for Early-Stage Selection in Sugarcane Breeding. Remote Sensing, 2019, 11, 2952.	4.0	34
34	Genome-Wide Analysis of the DREB Subfamily in Saccharum spontaneum Reveals Their Functional Divergence During Cold and Drought Stresses. Frontiers in Genetics, 2019, 10, 1326.	2.3	28
35	ScGAI is a key regulator of culm development in sugarcane. Journal of Experimental Botany, 2018, 69, 3823-3837.	4.8	46
36	Role of the SPS Gene Families in the Regulation of Sucrose Accumulation in Sugarcane. Sugar Tech, 2017, 19, 117-124.	1.8	9

#	Article	IF	CITATIONS
37	Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones. Journal of Experimental Botany, 2017, 68, 2377-2385.	4.8	28
38	Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. Frontiers in Plant Science, 2017, 8, 1077.	3.6	131
39	The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening. Frontiers in Plant Science, 2016, 7, 1021.	3.6	47
40	Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Scientific Reports, 2016, 6, 23632.	3.3	82
41	Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 2016, 6, 37389.	3.3	92
42	Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in <i>Saccharum </i> spp. and related germplasm. Journal of Experimental Botany, 2016, 67, 861-871.	4.8	44
43	Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity. Scientific Reports, 2015, 5, 15727.	3.3	76
44	Soil microbial responses to labile carbon input differ in adjacent sugarcane and forest soils. Soil Research, 2014, 52, 307.	1.1	5
45	Field performance of transgenic sugarcane produced using <i>Agrobacterium</i> and biolistics methods. Plant Biotechnology Journal, 2014, 12, 411-424.	8.3	32
46	A new species of <scp><i>B</i></scp> <i>urkholderia </i> isolated from sugarcane roots promotes plant growth. Microbial Biotechnology, 2014, 7, 142-154.	4.2	91
47	Microbial function in adjacent subtropical forest and agricultural soil. Soil Biology and Biochemistry, 2013, 57, 68-77.	8.8	38
48	The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 2013, 32, 945-957.	5.6	218
49	Amino acids are a nitrogen source for sugarcane. Functional Plant Biology, 2012, 39, 503.	2.1	22
50	Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation. Agriculture, Ecosystems and Environment, 2012, 155, 16-26.	5.3	29
51	Nitrate Paradigm Does Not Hold Up for Sugarcane. PLoS ONE, 2011, 6, e19045.	2.5	148
52	Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Reports, 2010, 29, 173-183.	5.6	70
53	A quantitative genetics approach to nitrogen use efficiency in sugarcane. Functional Plant Biology, 2010, 37, 448.	2.1	12

Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum) Tj ETQq0 0.0 rgBT /Qverlock 10.21

#	Article	IF	CITATIONS
55	Sugarcane genotypes differ in internal nitrogen use efficiency. Functional Plant Biology, 2007, 34, 1122.	2.1	40
56	Somatic embryogenesis in sugarcane—An addendum to the invited review â€̃sugarcane biotechnology: The challenges and opportunities,' in vitro cell. Dev. Biol. Plant 41(4):345–363; 2005. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 201-205.	2.1	21
57	Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Reports, 2006, 25, 1007-1015.	5.6	82
58	Sugarcane biotechnology: The challenges and opportunities. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 345-363.	2.1	181