Sharon Denise Ricardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8006411/publications.pdf

Version: 2024-02-01

88 papers 5,265 citations

38 h-index 71 g-index

90 all docs 90 docs citations

90 times ranked 7224 citing authors

#	Article	IF	CITATIONS
1	WNT1-inducible signaling pathway protein 1 regulates kidney inflammation through the NF- $\hat{\Gamma}$ B pathway. Clinical Science, 2022, 136, 29-44.	4.3	4
2	A Novel Approach to Enhance the Regenerative Potential of Circulating Endothelial Progenitor Cells in Patients with End-Stage Kidney Disease. Biomedicines, 2022, 10, 883.	3.2	2
3	The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells, 2022, 11, 1413.	4.1	10
4	Enhancing the Therapeutic Potential of Mesenchymal Stromal Cell-Based Therapies with an Anti-Fibrotic Agent for the Treatment of Chronic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 6035.	4.1	5
5	The Differentiation of Human Induced Pluripotent Stem Cells into Podocytes In Vitro. Methods in Molecular Biology, $2021, 1.$	0.9	O
6	Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against 1K/DOCA/saltâ€induced hypertension. British Journal of Pharmacology, 2021, 178, 1164-1181.	5 . 4	12
7	Modelling X-linked Alport Syndrome With Induced Pluripotent Stem Cell-Derived Podocytes. Kidney International Reports, 2021, 6, 2912-2917.	0.8	1
8	Comparing the renoprotective effects of BM-MSCs versus BM-MSC-exosomes, when combined with an anti-fibrotic drug, in hypertensive mice. Biomedicine and Pharmacotherapy, 2021, 144, 112256.	5.6	8
9	Percutaneous intrarenal transplantation of differentiated induced pluripotent stem cells into newborn mice. Anatomical Record, 2020, 303, 2603-2612.	1.4	3
10	The Use of Live Cell Imaging and Automated Image Analysis to Assist With Determining Optimal Parameters for Angiogenic Assay in vitro. Frontiers in Cell and Developmental Biology, 2019, 7, 45.	3.7	7
11	Renal epithelial cells retain primary cilia during human acute renal allograft rejection injury. BMC Research Notes, 2019, 12, 718.	1.4	3
12	mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight, 2019, 4, .	5.0	69
13	Phenotype and influx kinetics of leukocytes and inflammatory cytokine production in kidney ischemia/reperfusion injury. Nephrology, 2018, 23, 75-85.	1.6	12
14	Endothelial Progenitor Cells and Vascular Health inÂDialysis Patients. Kidney International Reports, 2018, 3, 205-211.	0.8	14
15	The Use of Targeted Next Generation Sequencing to Explore Candidate Regulators of TGF-β1's Impact on Kidney Cells. Frontiers in Physiology, 2018, 9, 1755.	2.8	8
16	Induced Pluripotent Stem Cell–Derived Podocyte-Like Cells as Models for Assessing Mechanisms Underlying Heritable Disease Phenotype: Initial Studies Using Two Alport Syndrome Patient Lines Indicate Impaired Potassium Channel Activity. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 335-347.	2.5	11
17	The use of hydrogels for cell-based treatment of chronic kidney disease. Clinical Science, 2018, 132, 1977-1994.	4.3	16
18	Gene editing of stem cells for kidney disease modelling and therapeutic intervention. Nephrology, 2018, 23, 981-990.	1.6	7

#	Article	IF	Citations
19	The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice. Respiratory Research, 2018, 19, 114.	3.6	27
20	<i>miR-378</i> reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signalling. Clinical Science, 2017, 131, 411-423.	4.3	27
21	Effects of antenatal melatonin therapy on lung structure in growth-restricted newborn lambs. Journal of Applied Physiology, 2017, 123, 1195-1203.	2.5	17
22	The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations. Kidney International Reports, 2017, 2, 739-748.	0.8	30
23	Cell-Based Therapies for Tissue Fibrosis. Frontiers in Pharmacology, 2017, 8, 633.	3.5	17
24	Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy, 2016, 24, 1290-1301.	8.2	286
25	Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Human Molecular Genetics, 2016, 25, 2295-2313.	2.9	45
26	Mesenchymal stem cells as novel microâ€ribonucleic acid delivery vehicles in kidney disease. Nephrology, 2016, 21, 363-371.	1.6	12
27	Renal cellular hypoxia in adenineâ€induced chronic kidney disease. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 896-905.	1.9	17
28	Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease. Clinical Science, 2016, 130, 2151-2165.	4.3	13
29	Human mesenchymal stem cells alter the gene profile of monocytes from patients with Type 2 diabetes and end-stage renal disease. Regenerative Medicine, 2016, 11, 145-158.	1.7	13
30	Patient-Derived Induced Pluripotent Stem Cells to Target Kidney Disease., 2016,, 491-505.		0
31	Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Research, 2015, 15, 495-505.	0.7	36
32	M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H906-H917.	3.2	109
33	Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB Journal, 2015, 29, 540-553.	0.5	70
34	Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 256-267.	1.5	10
35	The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure. Respiratory Research, 2014, 15, 110.	3.6	8
36	Role of microRNA machinery in kidney fibrosis. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 543-550.	1.9	24

#	Article	IF	Citations
37	Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2014, 306, F1222-F1235.	2.7	119
38	M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respiratory Research, 2013, 14, 41.	3.6	89
39	Visualizing renal primary cilia. Nephrology, 2013, 18, 161-168.	1.6	14
40	A flow cytometric method for the analysis of macrophages in the vascular wall. Journal of Immunological Methods, 2013, 396, 33-43.	1.4	14
41	Mononuclear phagocyte system in kidney disease and repair. Nephrology, 2013, 18, 81-91.	1.6	54
42	Human Kidney Cell Reprogramming. Journal of the American Society of Nephrology: JASN, 2013, 24, 1347-1356.	6.1	23
43	Macrophages and CSF-1. Organogenesis, 2013, 9, 249-260.	1.2	121
44	Does a Nephron Deficit Exacerbate the Renal and Cardiovascular Effects of Obesity? PLoS ONE, 2013, 8, e73095.	2.5	12
45	Reversal of Vascular Macrophage Accumulation and Hypertension by a CCR2 Antagonist in Deoxycorticosterone/Salt-Treated Mice. Hypertension, 2012, 60, 1207-1212.	2.7	103
46	Emerging Roles for Renal Primary Cilia in Epithelial Repair. International Review of Cell and Molecular Biology, 2012, 293, 169-193.	3.2	21
47	The fate of bone marrow-derived cells carrying a polycystic kidney disease mutation in the genetically normal kidney. BMC Nephrology, 2012, 13, 91.	1.8	1
48	Chronic treatment with tempol does not significantly ameliorate renal tissue hypoxia or disease progression in a rodent model of polycystic kidney disease. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 917-929.	1.9	18
49	The Directed Differentiation of Human iPS Cells into Kidney Podocytes. PLoS ONE, 2012, 7, e46453.	2.5	163
50	Mesenchymal stem cells in kidney inflammation and repair. Nephrology, 2012, 17, 1-10.	1.6	83
51	Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Research, 2012, 8, 259-273.	0.7	95
52	In vitroinvestigation of renal epithelial injury suggests that primary cilium length is regulated by hypoxia-inducible mechanisms. Cell Biology International, 2011, 35, 909-913.	3.0	44
53	Colony-Stimulating Factor-1 Promotes Kidney Growth and Repair via Alteration of Macrophage Responses. American Journal of Pathology, 2011, 179, 1243-1256.	3.8	124
54	Generation of Induced Pluripotent Stem Cells from Human Kidney Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 1213-1220.	6.1	83

#	Article	IF	CITATIONS
55	Blockade of Endothelial-Mesenchymal Transition by a Smad3 Inhibitor Delays the Early Development of Streptozotocin-Induced Diabetic Nephropathy. Diabetes, 2010, 59, 2612-2624.	0.6	243
56	SCUBE1, a novel developmental gene involved in renal regeneration and repair. Nephrology Dialysis Transplantation, 2010, 25, 1421-1428.	0.7	24
57	Macrophages in Renal Development, Injury, and Repair. Seminars in Nephrology, 2010, 30, 255-267.	1.6	37
58	Resveratrol Inhibits Renal Fibrosis in the Obstructed Kidney. American Journal of Pathology, 2010, 177, 1065-1071.	3.8	181
59	Subfractionation of Differentiating Human Embryonic Stem Cell Populations Allows the Isolation of a Mesodermal Population Enriched for Intermediate Mesoderm and Putative Renal Progenitors. Stem Cells and Development, 2010, 19, 1637-1648.	2.1	49
60	Renal Primary Cilia Lengthen after Acute Tubular Necrosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2147-2153.	6.1	100
61	Alterations in renal cilium length during transient complete ureteral obstruction in the mouse. Journal of Anatomy, 2008, 213, 79-85.	1.5	43
62	Macrophage diversity in renal injury and repair. Journal of Clinical Investigation, 2008, 118, 3522-3530.	8.2	637
63	Renal cilia display length alterations following tubular injury and are present early in epithelial repair. Nephrology Dialysis Transplantation, 2007, 23, 834-841.	0.7	87
64	Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r–EGFP transgene reporter. Developmental Biology, 2007, 308, 232-246.	2.0	194
65	The Contribution of Bone Marrow-Derived Cells to the Development of Renal Interstitial Fibrosis. Stem Cells, 2007, 25, 697-706.	3.2	103
66	Polycystic kidney disease and the renal cilium (Review Article). Nephrology, 2007, 12, 559-564.	1.6	30
67	Inhibition of p38 Mitogen-Activated Protein Kinase and Transforming Growth Factor- \hat{l}^2 1/Smad Signaling Pathways Modulates the Development of Fibrosis in Adriamycin-Induced Nephropathy. American Journal of Pathology, 2006, 169, 1527-1540.	3.8	81
68	Modulation and Redistribution of Proteinase Inhibitor 8 (Serpinb8) during Kidney Regeneration. American Journal of Nephrology, 2006, 26, 34-42.	3.1	9
69	Blockade of p38 Mitogen-Activated Protein Kinase and TGF-β1/Smad Signaling Pathways Rescues Bone Marrow–Derived Peritubular Capillary Endothelial Cells in Adriamycin-Induced Nephrosis. Journal of the American Society of Nephrology: JASN, 2006, 17, 2799-2811.	6.1	33
70	Kidney Side Population Reveals Multilineage Potential and Renal Functional Capacity but also Cellular Heterogeneity. Journal of the American Society of Nephrology: JASN, 2006, 17, 1896-1912.	6.1	146
71	A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. Journal of Anatomy, 2005, 207, 813-821.	1.5	74
72	Adult stem cells in renal injury and repair (Review Article). Nephrology, 2005, 10, 276-282.	1.6	42

#	Article	IF	Citations
73	Modulation of osteopontin in proteinuria-induced renal interstitial fibrosis. Journal of Pathology, 2005, 207, 483-492.	4.5	26
74	Renal Structural and Functional Repair in a Mouse Model of Reversal of Ureteral Obstruction. Journal of the American Society of Nephrology: JASN, 2005, 16, 3623-3630.	6.1	146
75	Neonatal calyceal dilation and renal fibrosis resulting from loss of Adamts-1 in mouse kidney is due to a developmental dysgenesis. Nephrology Dialysis Transplantation, 2005, 20, 419-423.	0.7	31
76	A major site of expression of the ets transcription factor Elf5 is epithelia of exocrine glands. Histochemistry and Cell Biology, 2004, 122, 521-526.	1.7	36
77	Reduced Nephron Number in Adult Sheep, Hypertensive as a Result of Prenatal Glucocorticoid Treatment. Journal of Physiology, 2003, 549, 929-935.	2.9	219
78	Progression of tubulointerstitial injury by osteopontin-induced macrophage recruitment in advanced diabetic nephropathy of transgenic (mRen-2)27 rats. Nephrology Dialysis Transplantation, 2002, 17, 985-991.	0.7	57
79	Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney International, 2001, 60, 2087-2096.	5. 2	87
80	Angiotensinogen and AT ₁ antisense inhibition of osteopontin translation in rat proximal tubular cells. American Journal of Physiology - Renal Physiology, 2000, 278, F708-F716.	2.7	42
81	Chemokines and renal inflammation in proteinuric disorders: Searching for the inciting stimulus. Translational Research, 1999, 133, 13-14.	2.3	2
82	Regulation of proximal tubular osteopontin in experimental hydronephrosis in the rat. Kidney International, 1998, 54, 1501-1509.	5.2	49
83	Increased expression of decorin in experimental hydronephrosis. Kidney International, 1997, 51, 1133-1139.	5 . 2	23
84	Oxidized LDL stimulates the expression of TGF- \hat{l}^2 and fibronectin in human glomerular epithelial cells. Kidney International, 1997, 51, 147-154.	5.2	79
85	Expression of adhesion molecules in rat renal cortex during experimental hydronephrosis. Kidney International, 1996, 50, 2002-2010.	5.2	59
86	Section Review: Cardiovascular & Renal: Inhibition of macrophage function as a potential therapeutic strategy for the treatment of renal disease. Expert Opinion on Investigational Drugs, 1995, 4, 1151-1159.	4.1	0
87	Reactive oxygen species in puromycin aminonucleoside nephrosis: In vitro studies. Kidney International, 1994, 45, 1057-1069.	5. 2	50
88	Total numbers of glomeruli and individual glomerular cell types in the normal rat kidney. Cell and Tissue Research, 1992, 270, 37-45.	2.9	112