

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8005263/publications.pdf Version: 2024-02-01

CANCLU

#	Article	IF	CITATIONS
1	Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 2022, 15, 2433-2464.	10.4	29
2	Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy, 2022, 92, 106840.	16.0	39
3	Molecular Coadsorption of <i>p</i> -Hydroxythiophenol on Silver Nanoparticles Boosts the Plasmon-Mediated Decarboxylation Reaction. ACS Catalysis, 2022, 12, 2938-2946.	11.2	15
4	Realizing Ultrahigh Transconductance in Organic Electrochemical Transistor by Coâ€Doping PEDOT:PSS with Ionic Liquid and Dodecylbenzenesulfonate. Macromolecular Rapid Communications, 2022, 43, e2200212.	3.9	14
5	Monitoring the Thiol/Thiophenol Moleculeâ€Modulated Plasmonâ€Mediated Silver Oxidation with Darkâ€Field Optical Microscopy. Chemistry - A European Journal, 2022, 28, .	3.3	6
6	Preparation of Janus nanosheets composed of gold/palladium nanoparticles and reduced graphene oxide for highly efficient emulsion catalysis. Journal of Colloid and Interface Science, 2022, 625, 59-69.	9.4	7
7	Highly flexible and degradable memory electronics comprised of all-biocompatible materials. Nanoscale, 2021, 13, 724-729.	5.6	17
8	Preparation and applications of freestanding Janus nanosheets. Nanoscale, 2021, 13, 15151-15176.	5.6	21
9	Self-limiting lithiation of vanadium diboride nanosheets as ultra-stable mediators towards high-sulfur loading and long-cycle lithium sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 3134-3142.	4.9	10
10	Gold-Etched Silver Nanowire Endoscopy: Toward a Widely Accessible Platform for Surface-Enhanced Raman Scattering-Based Analysis in Living Cells. Analytical Chemistry, 2021, 93, 5037-5045.	6.5	8
11	Direct Observation of the Light-Induced Exfoliation of Molybdenum Disulfide Sheets in Water Medium. ACS Nano, 2021, 15, 5661-5670.	14.6	21
12	High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti ₃ C ₂ T _{<i>x</i>} MXene for the Monitoring of Human Activities. ACS Nano, 2021, 15, 9690-9700.	14.6	191
13	A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I. Journal of Semiconductors, 2021, 42, 092601.	3.7	17
14	Valence Regulation of Ultrathin Cerium Vanadate Nanosheets for Enhanced Photocatalytic CO2 Reduction to CO. Catalysts, 2021, 11, 1115.	3.5	11
15	Synthesis of Thin Bi ₉ O _{7.5} S ₆ Nanosheets for Improved Photodetection in a Wide Wavelength Range. Chemistry - an Asian Journal, 2021, 16, 3748-3753.	3.3	4
16	Plasmon-mediated photochemical transformation of inorganic nanocrystals. Applied Materials Today, 2021, 24, 101125.	4.3	14
17	Molecular Cocatalyst-Induced Enhancement of the Plasmon-Mediated Coupling of <i>p</i> -Nitrothiophenols at the Silver Nanoparticle–Graphene Oxide Interface. ACS Applied Nano Materials, 2021, 4, 10976-10984.	5.0	10
18	Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy, 2021, 89, 106329.	16.0	41

#	Article	IF	CITATIONS
19	Embedding Silver Nanowires into a Hydroxypropyl Methyl Cellulose Film for Flexible Electrochromic Devices with High Electromechanical Stability. ACS Applied Materials & Interfaces, 2021, 13, 1735-1742.	8.0	25
20	Modulating the plasmon-mediated silver oxidation using thiophenol molecules as monitored by <i>in situ</i> SERS spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 26385-26391.	2.8	5
21	MnO ₂ Nanosheetâ€Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zincâ€lon Batteries. ChemSusChem, 2020, 13, 1537-1545.	6.8	122
22	Single-molecule mapping of catalytic reactions on heterostructures. Nano Today, 2020, 34, 100957.	11.9	15
23	Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries. Energy Storage Materials, 2020, 32, 216-224.	18.0	42
24	Spatially and Temporally Resolved Heterogeneities in a Miscible Polymer Blend. ACS Omega, 2020, 5, 23931-23939.	3.5	4
25	Plasmon-generated hot holes for chemical reactions. Nano Research, 2020, 13, 3183-3197.	10.4	64
26	Modulating the Plasmon-Mediated Oxidation of <i>p</i> -Aminothiophenol with Asymmetrically Grafted Thiol Molecules. Journal of Physical Chemistry Letters, 2020, 11, 7650-7656.	4.6	18
27	Crack Formation on Crystalline Bismuth Oxychloride Thin Square Sheets by Using a Wetâ€Chemical Method. ChemNanoMat, 2020, 6, 759-764.	2.8	7
28	Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. ACS Applied Materials & Interfaces, 2020, 12, 16442-16450.	8.0	100
29	Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent Devices. ACS Nano, 2020, 14, 3876-3884.	14.6	86
30	Photoluminescence Emission during Photoreduction of Graphene Oxide Sheets as Investigated with Single-Molecule Microscopy. Journal of Physical Chemistry C, 2020, 124, 7914-7921.	3.1	15
31	Surface Modification Strategy for Promoting the Performance of Non-noble Metal Single-Atom Catalysts in Low-Temperature CO Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 19457-19466.	8.0	12
32	Recent developments of flexible and transparent SERS substrates. Journal of Materials Chemistry C, 2020, 8, 3956-3969.	5.5	110
33	Water-mediated polyol synthesis of pencil-like sharp silver nanowires suitable for nonlinear plasmonics. Chemical Communications, 2019, 55, 11630-11633.	4.1	10
34	Silver Nanowireâ€Templated Molecular Nanopatterning and Nanoparticle Assembly for Surfaceâ€Enhanced Raman Scattering. Chemistry - A European Journal, 2019, 25, 10561-10565.	3.3	13
35	Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 542, 207-212.	9.4	27
36	Effect of nanostructured silicon on surface enhanced Raman scattering. RSC Advances, 2018, 8, 6629-6633.	3.6	16

#	Article	IF	CITATIONS
37	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	21.0	28
38	Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Applied Materials & Interfaces, 2018, 10, 13011-13018.	8.0	45
39	A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. Nanoscale, 2018, 10, 16895-16901.	5.6	24
40	A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chemical Communications, 2017, 53, 5121-5124.	4.1	56
41	Plasmon-Mediated Surface Engineering of Silver Nanowires for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2017, 8, 2774-2779.	4.6	38
42	Surface Density-of-States Engineering of Anatase TiO ₂ by Small Polyols for Enhanced Visible-Light Photocurrent Generation. ACS Omega, 2017, 2, 6309-6313.	3.5	3
43	Facet-Dependent Diol-Induced Density of States of Anatase TiO ₂ Crystal Surface. ACS Omega, 2017, 2, 4032-4038.	3.5	12
44	In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates. Chemical Communications, 2017, 53, 11298-11301.	4.1	53
45	Solvent-induced improvement of Au photo-deposition and resulting photo-catalytic efficiency of Au/TiO2. RSC Advances, 2016, 6, 97464-97468.	3.6	10
46	Surface Plasmonâ€Assisted Site‧pecific Cutting of Silver Nanowires Using Femtosecond Laser. Advanced Materials Technologies, 2016, 1, 1600014.	5.8	7
47	Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 561-566.	4.6	234
48	Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. ACS Nano, 2016, 10, 2455-2466.	14.6	61
49	Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nature Communications, 2015, 6, 6287.	12.8	58
50	Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano, 2015, 9, 5520-5535.	14.6	274
51	Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 14880-14891.	2.6	11
52	Reshaping anisotropic gold nanoparticles through oxidative etching: the role of the surfactant and nanoparticle surface curvature. RSC Advances, 2015, 5, 6829-6833.	3.6	28
53	Remote excitation fluorescence correlation spectroscopy using silver nanowires. Proceedings of SPIE, 2014, , .	0.8	0
54	A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering. Chemical Communications, 2014, 50, 9839-9841.	4.1	34

#	Article	IF	CITATIONS
55	Liveâ€Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides. Advanced Materials, 2014, 26, 5124-5128.	21.0	110
56	Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy. ACS Nano, 2013, 7, 10344-10353.	14.6	359
57	Mechanical Exfoliation and Characterization of Single―and Few‣ayer Nanosheets of WSe ₂ , TaS ₂ , and TaSe ₂ . Small, 2013, 9, 1974-1981.	10.0	544
58	Graphene Oxide Scrolls on Hydrophobic Substrates Fabricated by Molecular Combing and Their Application in Gas Sensing. Small, 2013, 9, 382-386.	10.0	57
59	Surface Modification of Smooth Poly(<scp>l</scp> -lactic acid) Films for Gelatin Immobilization. ACS Applied Materials & Interfaces, 2012, 4, 687-693.	8.0	38
60	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale, 2012, 4, 293-297.	5.6	185
61	An Effective Method for the Fabrication of Few‣ayerâ€Thick Inorganic Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 9052-9056.	13.8	520
62	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	10.0	393
63	Chemoselective Photodeoxidization of Graphene Oxide Using Sterically Hindered Amines as Catalyst: Synthesis and Applications. ACS Nano, 2012, 6, 3027-3033.	14.6	82
64	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	10.0	1,346
65	Optical Identification of Single―and Few‣ayer MoS ₂ Sheets. Small, 2012, 8, 682-686.	10.0	290
66	Layered Nanomaterials: Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature (Small 1/2012). Small, 2012, 8, 2-2.	10.0	4
67	Goldâ€Nanoparticleâ€Embedded Polydimethylsiloxane Elastomers for Highly Sensitive Raman Detection. Small, 2012, 8, 1336-1340.	10.0	72
68	Surface-Enhanced Raman Scattering of Ag–Au Nanodisk Heterodimers. Journal of Physical Chemistry C, 2012, 116, 10390-10395.	3.1	31
69	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	14.6	3,103
70	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale, 2012, 4, 860-863.	5.6	43
71	Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chemical Communications, 2011, 47, 8560.	4.1	69
72	Electrochemical deposition of Cl-doped n-type Cu ₂ O on reduced graphene oxide electrodes. Journal of Materials Chemistry, 2011, 21, 3467-3470.	6.7	91

#	Article	IF	CITATIONS
73	Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes. Journal of Physical Chemistry C, 2011, 115, 15973-15979.	3.1	50
74	Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chemical Science, 2011, 2, 1817.	7.4	249
75	Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. Chemical Communications, 2011, 47, 10070.	4.1	16
76	Nanoscaleâ€Controlled Enzymatic Degradation of Poly(<scp>L</scp> â€lactic acid) Films Using Dipâ€Pen Nanolithography. Small, 2011, 7, 226-229.	10.0	24
77	Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small, 2011, 7, 3163-3168.	10.0	980
78	Singleâ€Layer Semiconducting Nanosheets: Highâ€Yield Preparation and Device Fabrication. Angewandte Chemie - International Edition, 2011, 50, 11093-11097.	13.8	1,517
79	Controlled growth of nano- and bio-arrays on patterned substrates. , 2010, , .		0
80	Generation of Dual Patterns of Metal Oxide Nanomaterials Based on Seed-Mediated Selective Growth. Langmuir, 2010, 26, 4616-4619.	3.5	12
81	Nanolithography of Single-Layer Graphene Oxide Films by Atomic Force Microscopy. Langmuir, 2010, 26, 6164-6166.	3.5	68
82	Aminosilane Micropatterns on Hydroxyl-Terminated Substrates: Fabrication and Applications. Langmuir, 2010, 26, 5603-5609.	3.5	98
83	Controlled growth of nano-and bio-arrays on patterned substrates. , 2010, , .		0
84	Facile "Needle‣cratching―Method for Fast Catalyst Patterns Used for Large‣cale Growth of Densely Aligned Singleâ€Walled Carbonâ€Nanotube Arrays. Small, 2009, 5, 2061-2065.	10.0	25
85	A Method for Fabrication of Graphene Oxide Nanoribbons from Graphene Oxide Wrinkles. Journal of Physical Chemistry C, 2009, 113, 19119-19122.	3.1	52
86	Dip-Pen Nanolithography-Generated Patterns Used as Gold Etch Resists: A Comparison Study of 16-Mercaptohexadecanioc Acid and 1-Octadecanethiol. Journal of Physical Chemistry C, 2009, 113, 4184-4187.	3.1	20
87	Controlled Assembly of Gold Nanoparticles and Graphene Oxide Sheets on Dip Pen Nanolithography-Generated Templates. Langmuir, 2009, 25, 10455-10458.	3.5	54
88	Controlled Growth of Peptide Nanoarrays on Si/SiO _{<i>x</i>} Substrates. Small, 2008, 4, 1324-1328.	10.0	42
89	Patterning Colloidal Metal Nanoparticles for Controlled Growth of Carbon Nanotubes. Advanced Materials, 2008, 20, 4873-4878.	21.0	74
90	Preparation of Silica Microcapsules Containing Octadecane as Temperature-adjusting Powder. Chemistry Letters, 2007, 36, 494-495.	1.3	18

#	Article	IF	CITATIONS
91	Preparation of shape-stabilized phase change materials as temperature-adjusting powder. Frontiers of Materials Science in China, 2007, 1, 284-287.	0.5	7