
Heidi M Appel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8002877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolics in ecological interactions: The importance of oxidation. Journal of Chemical Ecology, 1993, 19, 1521-1552.	1.8	606
2	Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects. Plant Physiology, 2005, 138, 1149-1162.	4.8	387
3	Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters, 2007, 10, 490-498.	6.4	333
4	Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67, 2450-2462.	2.9	248
5	Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 2014, 175, 1257-1266.	2.0	213
6	Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant Journal, 2007, 50, 488-499.	5.7	151
7	Flexible resource allocation during plant defense responses. Frontiers in Plant Science, 2013, 4, 324.	3.6	147
8	Limitations of Folin assays of foliar phenolics in ecological studies. Journal of Chemical Ecology, 2001, 27, 761-778.	1.8	133
9	Carbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink–source model of plant defense. New Phytologist, 2004, 164, 157-164.	7.3	118
10	ArabidopsisGH3-LIKE DEFENSE GENE 1is required for accumulation of salicylic acid, activation of defense responses and resistance toPseudomonas syringae. Plant Journal, 2007, 51, 234-246.	5.7	112
11	Gut redox conditions in herbivorous lepidopteran larvae. Journal of Chemical Ecology, 1990, 16, 3277-3290.	1.8	102
12	Significance of Metabolic Load in the Evolution of Host Specificity of Manduca Sexta. Ecology, 1992, 73, 216-228.	3.2	85
13	PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods, 2012, 8, 45.	4.3	70
14	Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Frontiers in Plant Science, 2014, 5, 565.	3.6	61
15	Galloyl-Derived Orthoquinones as Reactive Partners in Nucleophilic Additions and Dielsâ~'Alder Dimerizations:Â A Novel Route to the Dehydrodigalloyl Linker Unit of Agrimoniin-Type Ellagitannins. Journal of Organic Chemistry, 1996, 61, 6656-6665.	3.2	58
16	Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores. Frontiers in Plant Science, 2014, 5, 407.	3.6	56
17	Temporal Changes in Allocation and Partitioning of New Carbon as 11C Elicited by Simulated Herbivory Suggest that Roots Shape Aboveground Responses in Arabidopsis Â. Plant Physiology, 2013, 161, 692-704.	4.8	55
18	Oak Tannins Reduce Effectiveness of Thuricide (Bacillus thuringiensis) in the Gypsy Moth (Lepidoptera:) Tj ETQc	0 0 0 rgB	Г /Oyerlock 10

Heidi M Appel

#	Article	IF	CITATIONS
19	A galling insect activates plant reproductive programs during gall development. Scientific Reports, 2019, 9, 1833.	3.3	54
20	Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. Journal of Insect Physiology, 2016, 84, 4-21.	2.0	50
21	CROSS-KINGDOM CROSS-TALK: HORMONES SHARED BY PLANTS AND THEIR INSECT HERBIVORES. Ecology, 2004, 85, 70-77.	3.2	45
22	Fertility, Root Reserves and the Cost of Inducible Defenses in the Perennial Plant Solanum carolinense. Journal of Chemical Ecology, 2005, 31, 2263-2288.	1.8	35
23	Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: importance of midgut alkalinity. Journal of Insect Physiology, 1997, 43, 1169-1175.	2.0	29
24	Novel application of 2-[18F]fluoro-2-deoxy-d-glucose to study plant defenses. Nuclear Medicine and Biology, 2012, 39, 1152-1160.	0.6	28
25	Caterpillar Chewing Vibrations Cause Changes in Plant Hormones and Volatile Emissions in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 810.	3.6	28
26	Effects of jasmonic acid, branching and girdling on carbon and nitrogen transport in poplar. New Phytologist, 2012, 195, 419-426.	7.3	23
27	Probing the Role of Polyphenol Oxidation in Mediating Insectâ^'Pathogen Interactions. Galloyl-Derived Electrophilic Traps for theLymantriadisparNuclear Polyhedrosis Virus Matrix Protein Polyhedrin. Journal of Organic Chemistry, 1999, 64, 5794-5803.	3.2	20
28	Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores. Oecologia, 2020, 194, 1-13.	2.0	20
29	Adaptive Two-Dimensional Microgas Chromatography. Analytical Chemistry, 2012, 84, 4214-4220.	6.5	19
30	Plant Vascular Architecture Determines the Pattern of Herbivore-Induced Systemic Responses in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0123899.	2.5	18
31	Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid. Molecular Plant-Microbe Interactions, 2019, 32, 654-672.	2.6	14
32	Measuring â€~normalcy' in plant gene expression after herbivore attack. Molecular Ecology Resources, 2011, 11, 294-304.	4.8	13
33	Transcriptional and metabolic signatures of Arabidopsis responses to chewing damage by an insect herbivore and bacterial infection and the consequences of their interaction. Frontiers in Plant Science, 2014, 5, 441.	3.6	13
34	Fuzzy cluster analysis of bioinformatics data composed of microarray expression data and gene ontology annotations. , 2008, , .		12
35	Red oak responses to nitrogen addition depend on herbivory type, tree family, and site. Forest Ecology and Management, 2010, 259, 1930-1937.	3.2	12
36	Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae. Protoplasma, 2017, 254, 203-216.	2.1	12

Heidi M Appel

#	Article	IF	CITATIONS
37	The <scp>A</scp> rabidopsis immune regulator <scp><i>SRFR</i></scp> <i>1</i> dampens defences against herbivory by <scp><i>S</i></scp> <i>podoptera exigua</i> and parasitism by <scp><i>H</i></scp> <i>eterodera schachtii</i> . Molecular Plant Pathology, 2016, 17, 588-600.	4.2	11
38	Is polyphenol induction simply a result of altered carbon and nitrogen accumulation?. Plant Signaling and Behavior, 2012, 7, 1498-1500.	2.4	9
39	Use of Yellow Fluorescent Protein Fluorescence to Track OPR3 Expression in Arabidopsis Thaliana Responses to Insect Herbivory. Frontiers in Plant Science, 2019, 10, 1586.	3.6	9
40	Gut physicochemistry of grassland grasshoppers. Journal of Insect Physiology, 1998, 44, 693-700.	2.0	8