
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8001213/publications.pdf Version: 2024-02-01

Ημαι-Οιανις Ιμ

#	Article	IF	CITATIONS
1	Circular RNA: metabolism, functions and interactions with proteins. Molecular Cancer, 2020, 19, 172.	19.2	526
2	METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Molecular Cancer, 2019, 18, 112.	19.2	515
3	LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 2019, 18, 174.	19.2	315
4	LncRNAâ€mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Communications, 2021, 41, 109-120.	9.2	271
5	Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics, 2017, 7, 4836-4849.	10.0	265
6	Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression. Journal of Experimental and Clinical Cancer Research, 2016, 35, 142.	8.6	227
7	CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 2018, 37, 6025-6040.	5.9	211
8	NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduction and Targeted Therapy, 2020, 5, 231.	17.1	194
9	Long noncoding RNA XIST expedites metastasis and modulates epithelial–mesenchymal transition in colorectal cancer. Cell Death and Disease, 2017, 8, e3011-e3011.	6.3	170
10	Systematic Analysis of the Aberrances and Functional Implications of Ferroptosis in Cancer. IScience, 2020, 23, 101302.	4.1	128
11	Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. Journal of the National Cancer Institute, 2019, 111, 584-596.	6.3	125
12	Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nature Communications, 2020, 11, 1507.	12.8	121
13	LncRNA CamK-A Regulates Ca2+-Signaling-Mediated Tumor Microenvironment Remodeling. Molecular Cell, 2018, 72, 71-83.e7.	9.7	119
14	Mechanisms of Overcoming Intrinsic Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma through the Redox Modulation. Molecular Cancer Therapeutics, 2015, 14, 788-798.	4.1	109
15	Long Noncoding RNA p53‣tabilizing and Activating RNA Promotes p53 Signaling by Inhibiting Heterogeneous Nuclear Ribonucleoprotein K deSUMOylation and Suppresses Hepatocellular Carcinoma. Hepatology, 2020, 71, 112-129.	7.3	104
16	IL1 Receptor Antagonist Inhibits Pancreatic Cancer Growth by Abrogating NF-κB Activation. Clinical Cancer Research, 2016, 22, 1432-1444.	7.0	90
17	A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Molecular Medicine, 2019, 11, e10168.	6.9	90
18	ME1 Regulates NADPH Homeostasis to Promote Gastric Cancer Growth and Metastasis. Cancer Research, 2018, 78, 1972-1985.	0.9	86

#	Article	IF	CITATIONS
19	Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduction and Targeted Therapy, 2022, 7, 54.	17.1	84
20	Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nature Communications, 2017, 8, 14437.	12.8	77
21	FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene, 2021, 40, 5168-5181.	5.9	77
22	METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Frontiers in Oncology, 2020, 10, 115.	2.8	76
23	Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Theranostics, 2016, 6, 1160-1175.	10.0	75
24	A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Research, 2021, 31, 1088-1105.	12.0	72
25	Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nature Metabolism, 2021, 3, 90-106.	11.9	71
26	Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells. Theranostics, 2020, 10, 498-515.	10.0	68
27	Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters, 2018, 412, 243-255.	7.2	65
28	Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Letters, 2020, 473, 74-89.	7.2	63
29	Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes tumor growth and metastasis in gastric cancer. Redox Biology, 2018, 18, 246-255.	9.0	56
30	Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factorâ€ <i>lº</i> <scp>B</scp> activation. Journal of Pineal Research, 2016, 60, 27-38.	7.4	53
31	Inhibition of the NF-κB pathway by nafamostat mesilate suppresses colorectal cancer growth and metastasis. Cancer Letters, 2016, 380, 87-97.	7.2	53
32	Novel Genetic and Epigenetic Biomarkers of Prognostic and Predictive Significance in Stage II/III Colorectal Cancer. Molecular Therapy, 2021, 29, 587-596.	8.2	52
33	Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Cancer Letters, 2016, 379, 1-11.	7.2	51
34	Methionine deficiency facilitates antitumour immunity by altering m ⁶ A methylation of immune checkpoint transcripts. Gut, 2023, 72, 501-511.	12.1	51
35	Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death and Disease, 2016, 7, e2432-e2432.	6.3	49
36	MYC-Activated LncRNA <i>MNX1-AS1</i> Promotes the Progression of Colorectal Cancer by Stabilizing YB1. Cancer Research, 2021, 81, 2636-2650.	0.9	48

#	Article	IF	CITATIONS
37	Pharmacological Ascorbate Suppresses Growth of Gastric Cancer Cells with GLUT1 Overexpression and Enhances the Efficacy of Oxaliplatin Through Redox Modulation. Theranostics, 2018, 8, 1312-1326.	10.0	46
38	A CRISPR-driven colorimetric code platform for highly accurate telomerase activity assay. Biosensors and Bioelectronics, 2021, 172, 112749.	10.1	44
39	Hepatitis B virus infection is associated with younger median age at diagnosis and death in cancers. International Journal of Cancer, 2017, 141, 152-159.	5.1	38
40	Eukaryotic initiation factor 4A2 promotes experimental metastasis and oxaliplatin resistance in colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 196.	8.6	38
41	Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer Letters, 2016, 377, 149-157.	7.2	33
42	VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduction and Targeted Therapy, 2020, 5, 183.	17.1	30
43	A Feedback Circuitry between Polycomb Signaling and Fructose-1, 6-Bisphosphatase Enables Hepatic and Renal Tumorigenesis. Cancer Research, 2020, 80, 675-688.	0.9	25
44	DNA methylation regulator-mediated modification patterns and tumor microenvironment characterization in gastric cancer. Molecular Therapy - Nucleic Acids, 2021, 24, 695-710.	5.1	25
45	Correlation between immune signature and highâ€density lipoprotein cholesterol level in stage II/III colorectal cancer. Cancer Medicine, 2019, 8, 1209-1217.	2.8	22
46	College of American Pathologists Tumor Regression Grading System for Long-Term Outcome in Patients with Locally Advanced Rectal Cancer. Oncologist, 2021, 26, e780-e793.	3.7	21
47	The IncRNA XIST/miRâ€125bâ€2â€3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Medicine, 2021, 10, 2423-2441.	2.8	21
48	A two-microRNA-based signature predicts first-line chemotherapy outcomes in advanced colorectal cancer patients. Cell Death Discovery, 2018, 4, 116.	4.7	16
49	The Clinical and Biomarker Association of Programmed Death Ligand 1 and its Spatial Heterogeneous Expression in Colorectal Cancer. Journal of Cancer, 2018, 9, 4325-4333.	2.5	16
50	AMPKα1 confers survival advantage of colorectal cancer cells under metabolic stress by promoting redox balance through the regulation of glutathione reductase phosphorylation. Oncogene, 2020, 39, 637-650.	5.9	16
51	Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene, 2022, 41, 3912-3924.	5.9	14
52	Association between adjuvant chemotherapy and survival in patients with rectal cancer and pathological complete response after neoadjuvant chemoradiotherapy and resection. British Journal of Cancer, 2020, 123, 1244-1252.	6.4	9
53	IDDF2019-ABS-0289â€A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. , 2019, , .		1
54	IDDF2019-ABS-0316â€Long non-coding RNA CRCAL-2 promotes gastric cancer metastasis by activating wnt/beta-catenin pathway via stabilizing the nuclear transport protein RAN. , 2019, , .		1

#	Article	IF	CITATIONS
55	IDDF2019-ABS-0307â€Long non-coding RNA TMPO-AS1 regulates oesophageal squamous cell carcinoma metastases through activating GLI1 by Maintaining LAP2a expression. , 2019, , .		1
56	Pathologic-Based Nomograms for Predicting Overall Survival and Disease-Free Survival Among Patients with Locally Advanced Rectal Cancer. Cancer Management and Research, 2021, Volume 13, 1777-1789.	1.9	1
57	Performance of common genetic variants in risk prediction for colorectal cancer in Chinese: A two-stage and multicenter study. Genomics, 2021, 113, 867-873.	2.9	1
58	IDDF2018-ABS-0184â€LNCRNA AGPG regulates anabolism remodelling through affecting PFKFB3 stability in escc. , 2018, , .		0
59	IDDF2019-ABS-0245â€Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer. , 2019, , .		0
60	IDDF2019-ABS-0290â€IGF2BP2 facilitates tumor progression via an m6A-dependent mechanism in colorectal carcinoma. , 2019, , .		0
61	IDDF2019-ABS-0292â€Nucleus-translocated GCLM facilitates tumor progression through increasing transcription of OCT4 in colorectal carcinoma. , 2019, , .		0