
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8001099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal differences in culturable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) from the respiratory and gastrointestinal tracts in a patient with moderate coronavirus disease 2019 (COVID-19). Infection Control and Hospital Epidemiology, 2022, 43, 1286-1288.	1.8	1
2	Age-related differences in SARS-CoV-2 binding factors: An explanation for reduced susceptibility to severe COVID-19 among children?. Paediatric Respiratory Reviews, 2022, 44, 61-69.	1.8	6
3	Opposing Effects of Prior Infection versus Prior Vaccination on Vaccine Immunogenicity against Influenza A(H3N2) Viruses. Viruses, 2022, 14, 470.	3.3	11
4	Comparison of Seroconversion in Children and Adults With Mild COVID-19. JAMA Network Open, 2022, 5, e221313.	5.9	55
5	ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies. Frontiers in Pharmacology, 2022, 13, 813087.	3.5	6
6	Fibrin clot characteristics and anticoagulant response in a SARSâ€CoVâ€2â€infected endothelial model. EJHaem, 2022, 3, 326-334.	1.0	2
7	What influenza activity can we anticipate in 2022?. Medical Journal of Australia, 2022, 216, 239-241.	1.7	1
8	Long-Read RNA Sequencing Identifies Polyadenylation Elongation and Differential Transcript Usage of Host Transcripts During SARS-CoV-2 In Vitro Infection. Frontiers in Immunology, 2022, 13, 832223.	4.8	9
9	Offâ€ŧarget effects of bacillus Calmette–Guérin vaccination on immune responses to SARS oVâ€2: implications for protection against severe COVIDâ€19. Clinical and Translational Immunology, 2022, 11, e1387.	3.8	21
10	Nonhuman primate models for evaluation of SARS-CoV-2 vaccines. Expert Review of Vaccines, 2022, 21, 1055-1070.	4.4	1
11	Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano, 2022, 16, 11769-11780.	14.6	108
12	Robustness of the Ferret Model for Influenza Risk Assessment Studies: a Cross-Laboratory Exercise. MBio, 2022, 13, .	4.1	12
13	Viewpoint of a WHO Advisory Group Tasked to Consider Establishing a Closely-monitored Challenge Model of Coronavirus Disease 2019 (COVID-19) in Healthy Volunteers. Clinical Infectious Diseases, 2021, 72, 2035-2041.	5.8	15
14	Persistence of SARS-CoV-2–Specific IgG in Children 6 Months After Infection, Australia. Emerging Infectious Diseases, 2021, 27, 2233-2235.	4.3	13
15	Robust correlations across six SARSâ€CoVâ€2 serology assays detecting distinct antibody features. Clinical and Translational Immunology, 2021, 10, e1258.	3.8	28
16	Vaccines for older adults. BMJ, The, 2021, 372, n188.	6.0	36
17	Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nature Communications, 2021, 12, 1162.	12.8	316
18	Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Reports Medicine, 2021, 2, 100208.	6.5	115

#	Article	IF	CITATIONS
19	Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nature Communications, 2021, 12, 1403.	12.8	65
20	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	109
21	Evaluation of 6 Commercial SARS-CoV-2 Serology Assays Detecting Different Antibodies for Clinical Testing and Serosurveillance. Open Forum Infectious Diseases, 2021, 8, ofab239.	0.9	23
22	Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Reports, 2021, 35, 109108.	6.4	25
23	Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine, 2021, 27, 1205-1211.	30.7	3,133
24	The success of SARS-CoV-2 vaccines and challenges ahead. Cell Host and Microbe, 2021, 29, 1111-1123.	11.0	67
25	SARS-CoV-2 Variants and Vaccines. New England Journal of Medicine, 2021, 385, 179-186.	27.0	322
26	Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay. JCI Insight, 2021, 6, .	5.0	33
27	Prevalence of Neutralising Antibodies to HCoV-NL63 in Healthy Adults in Australia. Viruses, 2021, 13, 1618.	3.3	3
28	Immune imprinting and SARS-CoV-2 vaccine design. Trends in Immunology, 2021, 42, 956-959.	6.8	73
29	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	6.4	35
30	A second external quality assessment of isolation and identification of influenza viruses in cell culture in the Asia Pacific region highlights improved performance by participating laboratories. Journal of Clinical Virology, 2021, 142, 104907.	3.1	0
31	Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2021, 21, 1383-1394.	9.1	82
32	Preclinical development of a molecular clampâ€stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2. Clinical and Translational Immunology, 2021, 10, e1269.	3.8	45
33	BCG vaccination to reduce the impact of COVID-19 in healthcare workers: Protocol for a randomised controlled trial (BRACE trial). BMJ Open, 2021, 11, e052101.	1.9	27
34	A case report describing the immune response of an infant with congenital heart disease and severe COVID-19. Communications Medicine, 2021, 1, .	4.2	3
35	A point-of-care lateral flow assay for neutralising antibodies against SARS-CoV-2. EBioMedicine, 2021, 74, 103729.	6.1	29
36	Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018. Emerging Infectious Diseases, 2020, 26, 143-147.	4.3	14

#	Article	IF	CITATIONS
37	Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nature Medicine, 2020, 26, 1428-1434.	30.7	400
38	Immune responses to SARS-CoV-2 in three children of parents with symptomatic COVID-19. Nature Communications, 2020, 11, 5703.	12.8	90
39	Evaluation of Serological Tests for SARS-CoV-2: Implications for Serology Testing in a Low-Prevalence Setting. Journal of Infectious Diseases, 2020, 222, 1280-1288.	4.0	56
40	Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nature Reviews Immunology, 2020, 20, 727-738.	22.7	107
41	Convalescent plasma treatment for COVIDâ€19: Tempering expectations with the influenza experience. European Journal of Immunology, 2020, 50, 1447-1453.	2.9	14
42	SARS-CoV-2: A New Song Recalls an Old Melody. Cell Host and Microbe, 2020, 27, 692-694.	11.0	16
43	Live Attenuated Influenza Vaccines for Pandemic Preparedness. Journal of the Pediatric Infectious Diseases Society, 2020, 9, S15-S18.	1.3	1
44	Live Attenuated Cold-Adapted Influenza Vaccines. Cold Spring Harbor Perspectives in Medicine, 2020, 11, a038653.	6.2	9
45	Respiratory Virus Infections: Understanding COVID-19. Immunity, 2020, 52, 905-909.	14.3	217
46	Consensus summary report for CEPI/BC March 12–13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine, 2020, 38, 4783-4791.	3.8	102
47	COVID-19 vaccines: time to talk about the uncertainties. Nature, 2020, 586, 475-475.	27.8	17
48	Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. ELife, 2020, 9, .	6.0	35
49	A Tale of Two Mutations: Beginning to Understand the Problems with Egg-Based Influenza Vaccines?. Cell Host and Microbe, 2019, 25, 773-775.	11.0	16
50	The Critical Interspecies Transmission Barrier at the Animal–Human Interface. Tropical Medicine and Infectious Disease, 2019, 4, 72.	2.3	18
51	How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. Journal of Infectious Diseases, 2019, 219, S81-S87.	4.0	11
52	Immune Responses to Avian Influenza Viruses. Journal of Immunology, 2019, 202, 382-391.	0.8	53
53	Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight, 2019, 4, .	5.0	15
54	Infants Harness the Germline against RSV. Immunity, 2018, 48, 190-192.	14.3	0

#	Article	IF	CITATIONS
55	H5N2 vaccine viruses on Russian and US live attenuated influenza virus backbones demonstrate similar infectivity, immunogenicity and protection in ferrets. Vaccine, 2018, 36, 1871-1879.	3.8	4
56	Influenza vaccination and prevention of cardiovascular disease mortality – Authors' reply. Lancet, The, 2018, 391, 427-428.	13.7	6
57	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	3.4	30
58	Epidemiological Data on the Effectiveness of Influenza Vaccine—Another Piece of the Puzzle. Journal of Infectious Diseases, 2018, 218, 176-178.	4.0	5
59	Innate and adaptive T cells in influenza disease. Frontiers of Medicine, 2018, 12, 34-47.	3.4	67
60	Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine. Journal of Immunology, 2018, 200, 4068-4077.	0.8	50
61	Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028811.	5.5	19
62	Chasing Seasonal Influenza — The Need for a Universal Influenza Vaccine. New England Journal of Medicine, 2018, 378, 7-9.	27.0	213
63	Avian influenza H7N9 viruses: a rare second warning. Cell Research, 2018, 28, 1-2.	12.0	38
64	Pathogenesis, Humoral Immune Responses, and Transmission between Cohoused Animals in a Ferret Model of Human Respiratory Syncytial Virus Infection. Journal of Virology, 2018, 92, .	3.4	17
65	Advances in Influenza Virus Research: A Personal Perspective. Viruses, 2018, 10, 724.	3.3	2
66	DNA vaccine priming for seasonal influenza vaccine in children and adolescents 6 to 17 years of age: A phase 1 randomized clinical trial. PLoS ONE, 2018, 13, e0206837.	2.5	24
67	Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerging Infectious Diseases, 2018, 24, 965-971.	4.3	56
68	Strand-Specific Dual RNA Sequencing of Bronchial Epithelial Cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions. Journal of Virology, 2018, 92, .	3.4	51
69	Passive immunization with influenza haemagglutinin specific monoclonal antibodies. Human Vaccines and Immunotherapeutics, 2018, 14, 1-9.	3.3	7
70	Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs, 2018, 78, 1297-1308.	10.9	13
71	Influenza Vaccine—Live. , 2018, , 489-510.e7.		2
72	Human seasonal influenza A viruses induce H7N9-cross-reactive antibody-dependent cellular cytotoxicity (ADCC) antibodies that are directed towards the nucleoprotein. Journal of Infectious Diseases, 2017, 215, jiw629.	4.0	55

#	Article	IF	CITATIONS
73	Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses. Journal of Virology, 2017, 91, .	3.4	9
74	<i>In Vivo</i> Imaging of Influenza Virus Infection in Immunized Mice. MBio, 2017, 8, .	4.1	36
75	Influenza. Lancet, The, 2017, 390, 697-708.	13.7	550
76	New options to treat influenza B. Nature Microbiology, 2017, 2, 1342-1343.	13.3	0
77	<i>In Vitro</i> Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice. Journal of Virology, 2017, 91, .	3.4	33
78	Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses. Science Immunology, 2017, 2, .	11.9	252
79	Evaluation of the Biological Properties and Cross-Reactive Antibody Response to H10 Influenza Viruses in Ferrets. Journal of Virology, 2017, 91, .	3.4	11
80	The Hemagglutinin A Stem Antibody MEDI8852 Prevents and Controls Disease and Limits Transmission of Pandemic Influenza Viruses. Journal of Infectious Diseases, 2017, 216, 356-365.	4.0	46
81	Protective efficacy of influenza group 2 hemagglutinin stem-fragment immunogen vaccines. Npj Vaccines, 2017, 2, 35.	6.0	43
82	In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Neglected Tropical Diseases, 2017, 11, e0005584.	3.0	94
83	Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathogens, 2017, 13, e1006565.	4.7	69
84	Detection of adamantane-sensitive influenza A(H3N2) viruses in Australia, 2017: a cause for hope?. Eurosurveillance, 2017, 22, .	7.0	11
85	Induction of protective immunity against influenza A/Jiangxi-Donghu/346/2013 (H10N8) in mice. Journal of General Virology, 2017, 98, 155-165.	2.9	0
86	Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.	28.9	270
87	Moving On Out: Transport and Packaging of Influenza Viral RNA into Virions. Annual Review of Virology, 2016, 3, 411-427.	6.7	45
88	Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell Host and Microbe, 2016, 19, 800-813.	11.0	238
89	Correlates of Immunity to Influenza as Determined by Challenge of Children with Live, Attenuated Influenza Vaccine. Open Forum Infectious Diseases, 2016, 3, ofw108.	0.9	36
90	Generation and Protective Ability of Influenza Virus–Specific Antibody-Dependent Cellular Cytotoxicity in Humans Elicited by Vaccination, Natural Infection, and Experimental Challenge. Journal of Infectious Diseases, 2016, 214, 945-952.	4.0	84

#	Article	IF	CITATIONS
91	Evaluation of the Safety and Immunogenicity of a Candidate Pandemic Live Attenuated Influenza Vaccine (pLAIV) Against Influenza A(H7N9). Journal of Infectious Diseases, 2016, 213, 922-929.	4.0	45
92	Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine, 2016, 34, 563-570.	3.8	59
93	A 12-Month–Interval Dosing Study in Adults Indicates That a Single Dose of the National Institute of Allergy and Infectious Diseases Tetravalent Dengue Vaccine Induces a Robust Neutralizing Antibody Response. Journal of Infectious Diseases, 2016, 214, 832-835.	4.0	51
94	Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection. Journal of Infectious Diseases, 2016, 213, 1557-1561.	4.0	84
95	Boosted Influenza-Specific T Cell Responses after H5N1 Pandemic Live Attenuated Influenza Virus Vaccination. Frontiers in Immunology, 2015, 6, 287.	4.8	25
96	High-Affinity H7 Head and Stalk Domain–Specific Antibody Responses to an Inactivated Influenza H7N7 Vaccine After Priming With Live Attenuated Influenza Vaccine. Journal of Infectious Diseases, 2015, 212, 1270-1278.	4.0	43
97	Respiratory Virus Vaccines. , 2015, , 1129-1170.		7
98	Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology, 2015, 479-480, 247-258.	2.4	80
99	Robust and Balanced Immune Responses to All 4 Dengue Virus Serotypes Following Administration of a Single Dose of a Live Attenuated Tetravalent Dengue Vaccine to Healthy, Flavivirus-Naive Adults. Journal of Infectious Diseases, 2015, 212, 702-710.	4.0	158
100	Live Attenuated and Inactivated Influenza Vaccines in Children. Journal of Infectious Diseases, 2015, 211, 352-360.	4.0	40
101	Influenza Vaccines: Challenges and Solutions. Cell Host and Microbe, 2015, 17, 295-300.	11.0	261
102	Evaluation of candidate vaccine approaches for MERS-CoV. Nature Communications, 2015, 6, 7712.	12.8	258
103	Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9430-9435.	7.1	38
104	Animal models for SARS and MERS coronaviruses. Current Opinion in Virology, 2015, 13, 123-129.	5.4	156
105	A Single Dose of an Avian H3N8 Influenza Virus Vaccine Is Highly Immunogenic and Efficacious against a Recently Emerged Seal Influenza Virus in Mice and Ferrets. Journal of Virology, 2015, 89, 6907-6917.	3.4	9
106	An addition to treatment options for avian influenza A H5N1?. Lancet Infectious Diseases, The, 2015, 15, 251-253.	9.1	1
107	The soft palate is an important site of adaptation for transmissible influenza viruses. Nature, 2015, 526, 122-125.	27.8	133
108	Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge. MBio, 2015, 6, e01487-15.	4.1	48

#	Article	IF	CITATIONS
109	Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virology, 2015, 10, 1033-1047.	1.8	9
110	Replication of live attenuated cold-adapted H2N2 influenza virus vaccine candidates in non human primates. Vaccine, 2015, 33, 193-200.	3.8	7
111	A Live Attenuated Equine H3N8 Influenza Vaccine Is Highly Immunogenic and Efficacious in Mice and Ferrets. Journal of Virology, 2015, 89, 1652-1659.	3.4	11
112	Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus. Vaccine Journal, 2014, 21, 737-746.	3.1	17
113	Improving pandemic H5N1 influenza vaccines by combining different vaccine platforms. Expert Review of Vaccines, 2014, 13, 873-883.	4.4	25
114	Influenza A Virus Assembly Intermediates Fuse in the Cytoplasm. PLoS Pathogens, 2014, 10, e1003971.	4.7	128
115	Development of a High-Yield Live Attenuated H7N9 Influenza Virus Vaccine That Provides Protection against Homologous and Heterologous H7 Wild-Type Viruses in Ferrets. Journal of Virology, 2014, 88, 7016-7023.	3.4	57
116	Live attenuated H7N7 influenza vaccine primes for a vigorous antibody response to inactivated H7N7 influenza vaccine. Vaccine, 2014, 32, 6798-6804.	3.8	65
117	Severity of Clinical Disease and Pathology in Ferrets Experimentally Infected with Influenza Viruses Is Influenced by Inoculum Volume. Journal of Virology, 2014, 88, 13879-13891.	3.4	43
118	Lymphopenia Associated with Highly Virulent H5N1 Virus Infection Due to Plasmacytoid Dendritic Cell–Mediated Apoptosis of T Cells. Journal of Immunology, 2014, 192, 5906-5912.	0.8	49
119	Live Attenuated Influenza Vaccine. Current Topics in Microbiology and Immunology, 2014, 386, 181-204.	1.1	58
120	The Temperature-Sensitive and Attenuation Phenotypes Conferred by Mutations in the Influenza Virus PB2, PB1, and NP Genes Are Influenced by the Species of Origin of the PB2 Gene in Reassortant Viruses Derived from Influenza A/California/07/2009 and A/WSN/33 Viruses. Journal of Virology, 2014, 88, 12339-12347.	3.4	15
121	The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines. Journal of Virology, 2014, 88, 12374-12384.	3.4	32
122	A Live Attenuated Influenza A(H5N1) Vaccine Induces Long-Term Immunity in the Absence of a Primary Antibody Response. Journal of Infectious Diseases, 2014, 209, 1860-1869.	4.0	87
123	African Green Monkeys Recapitulate the Clinical Experience with Replication of Live Attenuated Pandemic Influenza Virus Vaccine Candidates. Journal of Virology, 2014, 88, 8139-8152.	3.4	28
124	Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets. Journal of Virology, 2014, 88, 2867-2876.	3.4	18
125	An openâ€label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults. Influenza and Other Respiratory Viruses, 2013, 7, 66-73.	3.4	38
126	H5N1 vaccines in humans. Virus Research, 2013, 178, 78-98.	2.2	83

8

#	Article	IF	CITATIONS
127	Influenza vaccine—live. , 2013, , 294-311.		2
128	Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets. Virology, 2013, 446, 349-356.	2.4	21
129	A Single Dose of Any of Four Different Live Attenuated Tetravalent Dengue Vaccines Is Safe and Immunogenic in Flavivirus-naive Adults: A Randomized, Double-blind Clinical Trial. Journal of Infectious Diseases, 2013, 207, 957-965.	4.0	147
130	The prospects and challenges of universal vaccines for influenza. Trends in Microbiology, 2013, 21, 350-358.	7.7	56
131	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	12.6	34
132	Replication and Immunogenicity of Swine, Equine, and Avian H3 Subtype Influenza Viruses in Mice and Ferrets. Journal of Virology, 2013, 87, 6901-6910.	3.4	30
133	Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine. Journal of Infectious Diseases, 2013, 207, 288-296.	4.0	23
134	B Cell Response and Hemagglutinin Stalk-Reactive Antibody Production in Different Age Cohorts following 2009 H1N1 Influenza Virus Vaccination. Vaccine Journal, 2013, 20, 867-876.	3.1	59
135	Mammalian Adaptation in the PB2 Gene of Avian H5N1 Influenza Virus. Journal of Virology, 2013, 87, 10884-10888.	3.4	30
136	Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4592-4597.	7.1	99
137	Roadblocks to translational challenges on viral pathogenesis. Nature Medicine, 2013, 19, 30-34.	30.7	7
138	Antigen-activated dendritic cells ameliorate influenza A infections. Journal of Clinical Investigation, 2013, 123, 2850-2861.	8.2	15
139	Molecular Determinants of Severe Acute Respiratory Syndrome Coronavirus Pathogenesis and Virulence in Young and Aged Mouse Models of Human Disease. Journal of Virology, 2012, 86, 884-897.	3.4	132
140	Effect of Priming with H1N1 Influenza Viruses of Variable Antigenic Distances on Challenge with 2009 Pandemic H1N1 Virus. Journal of Virology, 2012, 86, 8625-8633.	3.4	37
141	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	12.6	58
142	The Contribution of Systemic and Pulmonary Immune Effectors to Vaccine-Induced Protection from H5N1 Influenza Virus Infection. Journal of Virology, 2012, 86, 5089-5098.	3.4	33
143	The Multibasic Cleavage Site of the Hemagglutinin of Highly Pathogenic A/Vietnam/1203/2004 (H5N1) Avian Influenza Virus Acts as a Virulence Factor in a Host-Specific Manner in Mammals. Journal of Virology, 2012, 86, 2706-2714.	3.4	87
144	Antibody Pressure by a Human Monoclonal Antibody Targeting the 2009 Pandemic H1N1 Virus Hemagglutinin Drives the Emergence of a Virus with Increased Virulence in Mice. MBio, 2012, 3, .	4.1	63

#	Article	IF	CITATIONS
145	The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine, 2012, 30, 2516-2522.	3.8	30
146	Evaluation of replication, immunogenicity and protective efficacy of a live attenuated cold-adapted pandemic H1N1 influenza virus vaccine in non-human primates. Vaccine, 2012, 30, 5603-5610.	3.8	12
147	Comparative Study of Influenza Virus Replication in MDCK Cells and in Primary Cells Derived from Adenoids and Airway Epithelium. Journal of Virology, 2012, 86, 11725-11734.	3.4	56
148	The Ongoing Battle Against Influenza: The challenge of flu transmission. Nature Medicine, 2012, 18, 1468-1470.	30.7	21
149	Engineering H5N1 avian influenza viruses to study human adaptation. Nature, 2012, 486, 335-340.	27.8	53
150	Influenza Viruses. , 2012, , 1149-1159.e7.		7
151	Memory CD4+ T cells: beyond "helper―functions. Journal of Clinical Investigation, 2012, 122, 2768-2770.	8.2	9
152	Influenza virus vaccines: lessons from the 2009 H1N1 pandemic. Current Opinion in Virology, 2011, 1, 254-262.	5.4	54
153	Systems biology of vaccination for seasonal influenza in humans. Nature Immunology, 2011, 12, 786-795.	14.5	749
154	An open label Phase I trial of a live attenuated H6N1 influenza virus vaccine in healthy adults. Vaccine, 2011, 29, 3144-3148.	3.8	38
155	The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes and Infection, 2011, 13, 502-515.	1.9	75
156	Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. Journal of Experimental Medicine, 2011, 208, 181-193.	8.5	775
157	Vesicular Stomatitis Virus-Based H5N1 Avian Influenza Vaccines Induce Potent Cross-Clade Neutralizing Antibodies in Rhesus Macaques. Journal of Virology, 2011, 85, 4602-4605.	3.4	26
158	Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. Journal of Experimental Medicine, 2011, 208, 411-411.	8.5	9
159	The Magnitude of Local Immunity in the Lungs of Mice Induced by Live Attenuated Influenza Vaccines Is Determined by Local Viral Replication and Induction of Cytokines. Journal of Virology, 2011, 85, 76-85.	3.4	32
160	Seasonal influenza infection and live vaccine prime for a response to the 2009 pandemic H1N1 vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1140-1145.	7.1	56
161	Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus. PLoS Pathogens, 2011, 7, e1002443.	4.7	172
162	Comparison of a Live Attenuated 2009 H1N1 Vaccine with Seasonal Influenza Vaccines against 2009 Pandemic H1N1 Virus Infection in Mice and Ferrets. Journal of Infectious Diseases, 2011, 203, 930-936.	4.0	39

#	Article	lF	CITATIONS
163	The Role of Animal Models In Influenza Vaccine Research. , 2011, , 223-272.		1
164	Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets. Virology, 2010, 398, 109-114.	2.4	36
165	Activation of the innate immune system provides broad-spectrum protection against influenza A viruses with pandemic potential in mice. Virology, 2010, 406, 80-87.	2.4	38
166	Classical swine H1N1 influenza viruses confer cross protection from swine-origin 2009 pandemic H1N1 influenza virus infection in mice and ferrets. Virology, 2010, 408, 128-133.	2.4	23
167	Cellular targets for influenza drugs. Nature Biotechnology, 2010, 28, 239-240.	17.5	29
168	The PB2 Subunit of the Influenza Virus RNA Polymerase Affects Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and Inhibiting Expression of Beta Interferon. Journal of Virology, 2010, 84, 8433-8445.	3.4	187
169	Potent Vesicular Stomatitis Virus-Based Avian Influenza Vaccines Provide Long-Term Sterilizing Immunity against Heterologous Challenge. Journal of Virology, 2010, 84, 4611-4618.	3.4	30
170	Glycosylation at 158N of the Hemagglutinin Protein and Receptor Binding Specificity Synergistically Affect the Antigenicity and Immunogenicity of a Live Attenuated H5N1 A/Vietnam/1203/2004 Vaccine Virus in Ferrets. Journal of Virology, 2010, 84, 6570-6577.	3.4	224
171	Evaluation of Replication and Cross-Reactive Antibody Responses of H2 Subtype Influenza Viruses in Mice and Ferrets. Journal of Virology, 2010, 84, 7695-7702.	3.4	42
172	The Open Reading Frame 3a Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Promotes Membrane Rearrangement and Cell Death. Journal of Virology, 2010, 84, 1097-1109.	3.4	119
173	A Live Attenuated H7N7 Candidate Vaccine Virus Induces Neutralizing Antibody That Confers Protection from Challenge in Mice, Ferrets, and Monkeys. Journal of Virology, 2010, 84, 11950-11960.	3.4	50
174	An Adjuvant for the Induction of Potent, Protective Humoral Responses to an H5N1 Influenza Virus Vaccine with Antigen-Sparing Effect in Mice. Journal of Virology, 2010, 84, 8639-8649.	3.4	30
175	Immunogenicity and Protective Efficacy in Mice and Hamsters of a β-Propiolactone Inactivated Whole Virus SARS-CoV Vaccine. Viral Immunology, 2010, 23, 509-519.	1.3	59
176	SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism. PLoS Pathogens, 2010, 6, e1000849.	4.7	139
177	Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4 ⁺ T Cells Are Important in Control of SARS-CoV Infection. Journal of Virology, 2010, 84, 1289-1301.	3.4	367
178	Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. Journal of Clinical Investigation, 2010, 120, 1663-1673.	8.2	403
179	The Development of Live-Attenuated Vaccines for Pandemic Influenza. , 2010, , 423-430.		0
180	A Single-Amino-Acid Substitution in a Polymerase Protein of an H5N1 Influenza Virus Is Associated with Systemic Infection and Impaired T-Cell Activation in Mice. Journal of Virology, 2009, 83, 11102-11115.	3.4	69

#	Article	IF	CITATIONS
181	Antigenic Fingerprinting of H5N1 Avian Influenza Using Convalescent Sera and Monoclonal Antibodies Reveals Potential Vaccine and Diagnostic Targets. PLoS Medicine, 2009, 6, e1000049.	8.4	155
182	Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways. PLoS Pathogens, 2009, 5, e1000424.	4.7	68
183	A Live Attenuated H9N2 Influenza Vaccine Is Well Tolerated and Immunogenic in Healthy Adults. Journal of Infectious Diseases, 2009, 199, 711-716.	4.0	68
184	Evaluation of Live Attenuated Influenza A Virus H6 Vaccines in Mice and Ferrets. Journal of Virology, 2009, 83, 65-72.	3.4	53
185	Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice. Journal of Virology, 2009, 83, 4704-4708.	3.4	221
186	The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5N1 cold-adapted vaccine virus. Virology, 2009, 395, 280-288.	2.4	25
187	Attacking the flu: Neutralizing antibodies may lead to 'universal' vaccine. Nature Medicine, 2009, 15, 1251-1252.	30.7	37
188	A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a Phase I trial in healthy adults. Vaccine, 2009, 27, 3744-3753.	3.8	87
189	The Ferret Model for Influenza. Current Protocols in Microbiology, 2009, 13, Unit 15G.2.	6.5	57
190	The Mouse Model for Influenza. Current Protocols in Microbiology, 2009, 13, Unit 15G.3.	6.5	50
191	Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine, 2009, 27, 4953-4960.	3.8	109
192	Live Attenuated Vaccines for Pandemic Influenza. Current Topics in Microbiology and Immunology, 2009, 333, 109-132.	1.1	24
193	H5N1 Vaccine-Specific B Cell Responses in Ferrets Primed with Live Attenuated Seasonal Influenza Vaccines. PLoS ONE, 2009, 4, e4436.	2.5	21
194	A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets. Virology, 2008, 378, 123-132.	2.4	71
195	Animal models and vaccines for SARS-CoV infection. Virus Research, 2008, 133, 20-32.	2.2	136
196	Avian Influenza H6 Viruses Productively Infect and Cause Illness in Mice and Ferrets. Journal of Virology, 2008, 82, 10854-10863.	3.4	91
197	A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters. Journal of Virology, 2008, 82, 7721-7724.	3.4	112
198	Genomic Analysis Reveals Age-Dependent Innate Immune Responses to Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2008, 82, 9465-9476.	3.4	49

#	Article	IF	CITATIONS
199	The role of animal models in influenza vaccine research. , 2008, , 161-202.		4
200	Influenza Viruses. , 2008, , 1130-1138.		5
201	A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. Journal of Virology, 2007, 81, 1701-1713.	3.4	354
202	Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12123-12128.	7.1	276
203	Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza. PLoS Medicine, 2007, 4, e178.	8.4	185
204	Can Immunity Induced by the Human Influenza Virus N1 Neuraminidase Provide Some Protection from Avian Influenza H5N1 Viruses?. PLoS Medicine, 2007, 4, e91.	8.4	32
205	A Mouse-Adapted SARS-Coronavirus Causes Disease and Mortality in BALB/c Mice. PLoS Pathogens, 2007, 3, e5.	4.7	428
206	H5N1 Viruses and Vaccines. PLoS Pathogens, 2007, 3, e40.	4.7	60
207	Evaluation of Replication and Pathogenicity of Avian Influenza A H7 Subtype Viruses in a Mouse Model. Journal of Virology, 2007, 81, 10558-10566.	3.4	86
208	Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate Fcl³RII-dependent entry into B cells in vitro. Vaccine, 2007, 25, 729-740.	3.8	197
209	Utility of the aged BALB/c mouse model to demonstrate prevention and control strategies for Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Vaccine, 2007, 25, 2173-2179.	3.8	24
210	Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Research, 2007, 128, 159-163.	2.2	119
211	The Immunobiology of SARS. Annual Review of Immunology, 2007, 25, 443-472.	21.8	242
212	Scientific barriers to developing vaccines against avian influenza viruses. Nature Reviews Immunology, 2007, 7, 267-278.	22.7	225
213	Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology, 2007, 366, 166-173.	2.4	51
214	Development of Effective Vaccines against Pandemic Influenza. Immunity, 2006, 24, 5-9.	14.3	151
215	Is there an ideal animal model for SARS?. Trends in Microbiology, 2006, 14, 299-303.	7.7	105
216	Vaccines for Pandemic Influenza. Emerging Infectious Diseases, 2006, 12, 66-72.	4.3	116

#	Article	IF	CITATIONS
217	The Pandemic Threat of Avian Influenza Viruses. Perspectives in Medical Virology, 2006, 16, 97-132.	0.1	2
218	Performance of Rapid Tests for Detection of Avian Influenza A Virus Types H5N1 and H9N2. Journal of Clinical Microbiology, 2006, 44, 1596-1597.	3.9	35
219	Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets. PLoS Medicine, 2006, 3, e360.	8.4	257
220	Therapy with a Severe Acute Respiratory Syndrome–Associated Coronavirus–Neutralizing Human Monoclonal Antibody Reduces Disease Severity and Viral Burden in Golden Syrian Hamsters. Journal of Infectious Diseases, 2006, 193, 685-692.	4.0	95
221	Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clinical Microbiology Reviews, 2006, 19, 614-636.	13.6	134
222	Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12121-12126.	7.1	312
223	Animal Models for Sars. Advances in Experimental Medicine and Biology, 2006, 581, 463-471.	1.6	26
224	Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 2005, 334, 160-165.	2.4	104
225	Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology, 2005, 340, 174-182.	2.4	149
226	SARS Vaccine Protective in Mice. Emerging Infectious Diseases, 2005, 11, 1312-1314.	4.3	42
227	Evaluation of Human Monoclonal Antibody 80R for Immunoprophylaxis of Severe Acute Respiratory Syndrome by an Animal Study, Epitope Mapping, and Analysis of Spike Variants. Journal of Virology, 2005, 79, 5900-5906.	3.4	145
228	Severe Acute Respiratory Syndrome Coronavirus Infection of Golden Syrian Hamsters. Journal of Virology, 2005, 79, 503-511.	3.4	270
229	Development and Characterization of a Severe Acute Respiratory Syndrome–Associated Coronavirus–Neutralizing Human Monoclonal Antibody That Provides Effective Immunoprophylaxis in Mice. Journal of Infectious Diseases, 2005, 191, 507-514.	4.0	146
230	Aged BALB/c Mice as a Model for Increased Severity of Severe Acute Respiratory Syndrome in Elderly Humans. Journal of Virology, 2005, 79, 5833-5838.	3.4	189
231	Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9804-9809.	7.1	372
232	pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN. Journal of Virology, 2004, 78, 5642-5650.	3.4	442
233	Identification and Characterization of Severe Acute Respiratory Syndrome Coronavirus Replicase Proteins. Journal of Virology, 2004, 78, 9977-9986.	3.4	236
234	Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice. Journal of Virology, 2004, 78, 3572-3577.	3.4	400

#	Article	IF	CITATIONS
235	Mechanisms of Host Defense following Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) Pulmonary Infection of Mice. Journal of Immunology, 2004, 173, 4030-4039.	0.8	306
236	An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine, 2004, 10, 871-875.	30.7	679
237	A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 2004, 428, 561-564.	27.8	633
238	Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 2004, 121, 85-91.	2.1	591
239	Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology, 2004, 330, 8-15.	2.4	209
240	Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6641-6646.	7.1	390
241	Reassortment and evolution of current human influenza A and B viruses. Virus Research, 2004, 103, 55-60.	2.2	72
242	Development and evaluation of candidate influenza a vaccines for pandemic preparedness. International Congress Series, 2004, 1263, 813-817.	0.2	0
243	Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet, The, 2004, 363, 2122-2127.	13.7	252
244	Evaluation of a Genetically Modified Reassortant H5N1 Influenza A Virus Vaccine Candidate Generated by Plasmid-Based Reverse Genetics. Virology, 2003, 305, 192-200.	2.4	243
245	Impact of glycosylation on the immunogenicity of a DNA-based influenza H5 HA vaccine. Virology, 2003, 308, 270-278.	2.4	62
246	Generation and evaluation of a high-growth reassortant H9N2 influenza A virus as a pandemic vaccine candidate. Vaccine, 2003, 21, 1974-1979.	3.8	57
247	Encephalitis Associated with Influenza B Virus Infection in 2 Children and a Review of the Literature. Clinical Infectious Diseases, 2003, 36, e87-e95.	5.8	77
248	Molecular Epidemiology of Influenza A(H3N2) Virus Reinfections. Journal of Infectious Diseases, 2002, 185, 980-985.	4.0	24
249	Intercontinental Circulation of Human Influenza A(H1N2) Reassortant Viruses during the 2001–2002 Influenza Season. Journal of Infectious Diseases, 2002, 186, 1490-1493.	4.0	58
250	DNA Vaccine Expressing Conserved Influenza Virus Proteins Protective Against H5N1 Challenge Infection in Mice. Emerging Infectious Diseases, 2002, 8, 796-801.	4.3	153
251	Reappearance and Global Spread of Variants of Influenza B/Victoria/2/87 Lineage Viruses in the 2000–2001 and 2001–2002 Seasons. Virology, 2002, 303, 1-8.	2.4	144
252	Influenza a infections: from chickens to humans. Clinical Microbiology Newsletter, 2001, 23, 9-13.	0.7	3

#	Article	IF	CITATIONS
253	Immunohistochemical and In Situ Hybridization Studies of Influenza A Virus Infection in Human Lungs. American Journal of Clinical Pathology, 2000, 114, 227-233.	0.7	91
254	Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Reviews in Medical Virology, 2000, 10, 337-348.	8.3	52
255	Vaccination with DNA encoding internal proteins of influenza virus does not require CD8+ cytotoxic T lymphocytes: either CD4+ or CD8+ T cells can promote survival and recovery after challenge. International Immunology, 2000, 12, 91-101.	4.0	67
256	Molecular Correlates of Influenza A H5N1 Virus Pathogenesis in Mice. Journal of Virology, 2000, 74, 10807-10810.	3.4	183
257	Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Research, 2000, 68, 71-85.	2.2	202
258	Influenza A Virus Infection Complicated by Fatal Myocarditis. American Journal of Forensic Medicine and Pathology, 2000, 21, 375-379.	0.8	58
259	A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses. Journal of Clinical Microbiology, 2000, 38, 2579-2583.	3.9	29
260	Genetic Characterization of the Pathogenic Influenza A/Goose/Guangdong/1/96 (H5N1) Virus: Similarity of Its Hemagglutinin Gene to Those of H5N1 Viruses from the 1997 Outbreaks in Hong Kong. Virology, 1999, 261, 15-19.	2.4	636
261	Characterization of the Surface Proteins of Influenza A (H5N1) Viruses Isolated from Humans in 1997–1998. Virology, 1999, 254, 115-123.	2.4	157
262	Predicting the Evolution of Human Influenza A. Science, 1999, 286, 1921-1925.	12.6	444
263	Recombinant Influenza A Virus Vaccines for the Pathogenic Human A/Hong Kong/97 (H5N1) Viruses. Journal of Infectious Diseases, 1999, 179, 1132-1138.	4.0	131
264	Influenza. Lancet, The, 1999, 354, 1277-1282.	13.7	609
265	Influenza Vaccines: Present and Future. Advances in Virus Research, 1999, 54, 349-373.	2.1	22
266	An influenza A live attenuated reassortant virus possessing three temperature-sensitive mutations in the PB2 polymerase gene rapidly loses temperature sensitivity following replication in hamsters. Vaccine, 1997, 15, 1372-1378.	3.8	40
267	Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses?. Virus Research, 1995, 39, 105-118.	2.2	25