
Rebecca Heald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/800028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ldentification and characterization of centromeric sequences in <i>Xenopus laevis</i> . Genome Research, 2021, 31, 958-967.	2.4	12
2	Reconstitution of muscle cell microtubule organization in vitro. Cytoskeleton, 2021, 78, 492-502.	1.0	2
3	Emergent properties of mitotic chromosomes. Current Opinion in Cell Biology, 2020, 64, 43-49.	2.6	11
4	The power of amphibians to elucidate mechanisms of size control and scaling. Experimental Cell Research, 2020, 392, 112036.	1.2	13
5	Kif2a Scales Meiotic Spindle Size in Hymenochirus boettgeri. Current Biology, 2019, 29, 3720-3727.e5.	1.8	22
6	Cell Biology: The Health Hazards of Super-Sizing. Current Biology, 2019, 29, R289-R292.	1.8	1
7	Generation of Xenopus Haploid, Triploid, and Hybrid Embryos. Methods in Molecular Biology, 2019, 1920, 303-315.	0.4	5
8	Importin α Partitioning to the Plasma Membrane Regulates Intracellular Scaling. Cell, 2019, 176, 805-815.e8.	13.5	94
9	The Use of Cell-Free <i>Xenopus</i> Extracts to Investigate Cytoplasmic Events. Cold Spring Harbor Protocols, 2019, 2019, pdb.top097048.	0.2	5
10	Subcellular scaling: does size matter for cell division?. Current Opinion in Cell Biology, 2018, 52, 88-95.	2.6	27
11	Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature, 2018, 553, 337-341.	13.7	69
12	Spindle assembly in egg extracts of the Marsabit clawed frog, <i>Xenopus borealis</i> . Cytoskeleton, 2018, 75, 244-257.	1.0	17
13	Xenopus Hybrids Provide Insight Into Cell and Organism Size Control. Frontiers in Physiology, 2018, 9, 1758.	1.3	10
14	A lab co-op helps young faculty members to thrive. Nature, 2018, 556, 409-409.	13.7	3
15	Preparation of Cellular Extracts from <i>Xenopus</i> Eggs and Embryos. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097055.	0.2	38
16	The Incredible Shrinking Spindle. Developmental Cell, 2018, 45, 421-423.	3.1	2
17	Cover Image, Volume 75, Issue 6. Cytoskeleton, 2018, 75, C1-C1.	1.0	0
18	Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. Developmental Biology, 2018, 442, 276-287.	0.9	27

#	Article	IF	CITATIONS
19	A DNA Crosslinker Collects Mitotic Chromosomes. Developmental Cell, 2017, 42, 440-442.	3.1	1
20	Transcription brings the complex(ity) to the centromere. Cell Cycle, 2017, 16, 235-236.	1.3	11
21	Regulatory remodeling in the allo-tetraploid frog Xenopus laevis. Genome Biology, 2017, 18, 198.	3.8	34
22	A versatile multivariate image analysis pipeline reveals features of <i>Xenopus</i> extract spindles. Journal of Cell Biology, 2016, 213, 127-136.	2.3	13
23	Microtubules: 50 years on from the discovery of tubulin. Nature Reviews Molecular Cell Biology, 2016, 17, 322-328.	16.1	67
24	Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in <i>Xenopus</i> . Journal of Cell Biology, 2016, 214, 133-141.	2.3	64
25	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	13.7	849
26	Biological Scaling Problems and Solutions in Amphibians. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019166.	2.3	43
27	A Comparative Analysis of Spindle Morphometrics across Metazoans. Current Biology, 2015, 25, 1542-1550.	1.8	98
28	Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. Journal of Cell Biology, 2015, 211, 1103-1111.	2.3	148
29	Enzymatically Generated CRISPR Libraries for Genome Labeling and Screening. Developmental Cell, 2015, 34, 373-378.	3.1	32
30	Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in <i>Xenopus</i> . Journal of Cell Biology, 2015, 209, 211-220.	2.3	18
31	TPX2 levels modulate meiotic spindle size and architecture in <i>Xenopus</i> egg extracts. Journal of Cell Biology, 2014, 206, 385-393.	2.3	73
32	Morphology and function of membrane-bound organelles. Current Opinion in Cell Biology, 2014, 26, 79-86.	2.6	57
33	RUVs Drive Chromosome Decondensation after Mitosis. Developmental Cell, 2014, 31, 259-260.	3.1	2
34	Limiting Cytoplasmic Components Couple Spindle Size to Cell Size during Embryogenesis. Biophysical Journal, 2014, 106, 167a.	0.2	0
35	REEP3/4 Ensure Endoplasmic Reticulum Clearance from Metaphase Chromatin and Proper Nuclear Envelope Architecture. Developmental Cell, 2013, 26, 315-323.	3.1	120
36	Cryptic No Longer: Arrays of CLASP1 TOG Domains. Structure, 2013, 21, 869-870.	1.6	2

#	Article	IF	CITATIONS
37	N-Terminal Phosphorylation of p60 Katanin Directly Regulates Microtubule Severing. Journal of Molecular Biology, 2013, 425, 214-221.	2.0	32
38	Cytoplasmic Volume Modulates Spindle Size During Embryogenesis. Science, 2013, 342, 856-860.	6.0	234
39	Interplay Between Spindle Architecture and Function. International Review of Cell and Molecular Biology, 2013, 306, 83-125.	1.6	69
40	RanGTP and CLASP1 cooperate to position the mitotic spindle. Molecular Biology of the Cell, 2013, 24, 2506-2514.	0.9	31
41	Mitotic spindle scaling during Xenopus development by kif2a and importin α. ELife, 2013, 2, e00290.	2.8	116
42	Histone H1 compacts DNA under force and during chromatin assembly. Molecular Biology of the Cell, 2012, 23, 4864-4871.	0.9	40
43	Mechanisms of Intracellular Scaling. Annual Review of Cell and Developmental Biology, 2012, 28, 113-135.	4.0	123
44	Multiple domains of human CLASP contribute to microtubule dynamics and organization in vitro and in <i>Xenopus</i> egg extracts. Cytoskeleton, 2012, 69, 155-165.	1.0	40
45	Altering membrane topology with Sar1 does not impair spindle assembly in <i>Xenopus</i> egg extracts. Cytoskeleton, 2012, 69, 591-599.	1.0	1
46	Katanin Contributes to Interspecies Spindle Length Scaling in Xenopus. Cell, 2011, 147, 1397-1407.	13.5	184
47	Importazole, a Small Molecule Inhibitor of the Transport Receptor Importin-β. ACS Chemical Biology, 2011, 6, 700-708.	1.6	211
48	Cell structure and dynamics. Current Opinion in Cell Biology, 2011, 23, 1-3.	2.6	83
49	Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract. Chromosoma, 2011, 120, 245-254.	1.0	17
50	Mitotic chromosome size scaling in Xenopus. Cell Cycle, 2011, 10, 3863-3870.	1.3	33
51	Mitotic Spindle Assembly around RCC1-Coated Beads in Xenopus Egg Extracts. PLoS Biology, 2011, 9, e1001225.	2.6	41
52	Functional Comparison of H1 Histones in Xenopus Reveals Isoform-Specific Regulation by Cdk1 and RanGTP. Current Biology, 2010, 20, 1048-1052.	1.8	21
53	Rebecca Heald. Current Biology, 2010, 20, R503-R504.	1.8	2
54	Xenopus Egg Extracts Increase Dynamics of Histone H1 on Sperm Chromatin. PLoS ONE, 2010, 5, e13111.	1.1	6

#	Article	IF	CITATIONS
55	A computational model predicts <i>Xenopus</i> meiotic spindle organization. Journal of Cell Biology, 2010, 191, 1239-1249.	2.3	125
56	Nuclear Size Is Regulated by Importin \hat{I}_{\pm} and Ntf2 in Xenopus. Cell, 2010, 143, 288-298.	13.5	234
57	Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biology, 2009, 10, 28.	3.0	78
58	Mitotic Spindle Assembly Mechanisms. , 2009, , 1-38.		4
59	Discovery of Selective Aminothiazole Aurora Kinase Inhibitors. ACS Chemical Biology, 2008, 3, 180-192.	1.6	37
60	Mechanisms of Mitotic Spindle Assembly and Function. International Review of Cytology, 2008, 265, 111-158.	6.2	313
61	SnapShot: Motor Proteins in Spindle Assembly. Cell, 2008, 134, 548-548.e1.	13.5	12
62	The RanGTP gradient – a GPS for the mitotic spindle. Journal of Cell Science, 2008, 121, 1577-1586.	1.2	259
63	Micromanipulation Studies of Chromatin Fibers in Xenopus Egg Extracts Reveal ATP-dependent Chromatin Assembly Dynamics. Molecular Biology of the Cell, 2007, 18, 464-474.	0.9	71
64	Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. Journal of Cell Biology, 2007, 176, 765-770.	2.3	110
65	Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. Journal of Cell Biology, 2007, 179, 1365-1373.	2.3	157
66	Mechanisms of Mitotic Spindle Assembly and Function. FASEB Journal, 2007, 21, A93.	0.2	2
67	Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nature Protocols, 2006, 1, 2305-2314.	5.5	155
68	Analysis of microtubule polymerization in vitro and during the cell cycle in Xenopus egg extracts. Methods, 2006, 38, 29-34.	1.9	15
69	Challenges facing the biologist doing chemical genetics. Nature Chemical Biology, 2006, 2, 55-58.	3.9	8
70	Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature, 2006, 440, 697-701.	13.7	339
71	The Long and the Short of it: Linker Histone H1 is Required for Metaphase Chromosome Compaction. Cell Cycle, 2006, 5, 589-591.	1.3	26
72	Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts. Journal of Cell Science, 2006, 119, 5057-5066.	1.2	31

#	Article	IF	CITATIONS
73	Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle. Journal of Cell Biology, 2006, 172, 19-25.	2.3	55
74	Serving Up a Plate of Chromosomes. Science, 2006, 311, 343-344.	6.0	4
75	Methods for Studying Spindle Assembly and Chromosome Condensation in Xenopus Egg Extracts. Methods in Molecular Biology, 2006, 322, 459-474.	0.4	96
76	Scratch n' Screen for Inhibitors of Cell Migration. Chemistry and Biology, 2005, 12, 263-265.	6.2	14
77	Xnf7 Contributes to Spindle Integrity through Its Microtubule-Bundling Activity. Current Biology, 2005, 15, 1755-1761.	1.8	29
78	The perichromosomal layer. Chromosoma, 2005, 114, 377-388.	1.0	91
79	Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts. Journal of Cell Biology, 2005, 169, 859-869.	2.3	116
80	A Rae1-Containing Ribonucleoprotein Complex Is Required for Mitotic Spindle Assembly. Cell, 2005, 121, 223-234.	13.5	257
81	Chromosome Congression: Another Fine Mesh We've Gotten into. Developmental Cell, 2005, 9, 314-315.	3.1	1
82	Two Protein 4.1 Domains Essential for Mitotic Spindle and Aster Microtubule Dynamics and Organization in Vitro. Journal of Biological Chemistry, 2004, 279, 27591-27598.	1.6	22
83	Burning the spindle at both ends. Nature, 2004, 427, 300-301.	13.7	5
84	Mechanisms and Molecules of the Mitotic Spindle. Current Biology, 2004, 14, R797-R805.	1.8	290
85	Adenomatous Polyposis Coli Associates with the Microtubule-Destabilizing Protein XMCAK. Current Biology, 2004, 14, 2033-2038.	1.8	30
86	Identification of a Novel Protein Regulating Microtubule Stability through a Chemical Approach. Chemistry and Biology, 2004, 11, 135-146.	6.2	65
87	Dissection of the Mammalian Midbody Proteome Reveals Conserved Cytokinesis Mechanisms. Science, 2004, 305, 61-66.	6.0	448
88	Centromere Glue Provides Spindle Cue. Cell, 2004, 118, 529-530.	13.5	2
89	Identification of a novel protein regulating microtubule stability through a chemical approach. Chemistry and Biology, 2004, 11, 135-46.	6.2	16
90	Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro. Proceedings of the United States of America, 2003, 100, 10752-10757.	3.3	96

#	Article	IF	CITATIONS
91	The condensin complex is required for proper spindle assembly and chromosome segregation in Xenopus egg extracts. Journal of Cell Biology, 2003, 161, 1041-1051.	2.3	52
92	The Role of Chromosome Architecture in Spindle Assembly and Anaphase: The Condensed Version. Cell Cycle, 2003, 2, 589-590.	1.3	0
93	Centrosomes and Kinetochores, Who Needs 'Em? The Role of Noncentromeric Chromatin in Spindle Assembly. Current Topics in Developmental Biology, 2003, 56, 85-113.	1.0	9
94	Visualization of a Ran-GTP Gradient in Interphase and Mitotic Xenopus Egg Extracts. Science, 2002, 295, 2452-2456.	6.0	496
95	Two Distinct Domains of Protein 4.1 Critical for Assembly of Functional Nuclei in Vitro. Journal of Biological Chemistry, 2002, 277, 44339-44346.	1.6	36
96	Microtubule dynamics. Journal of Cell Science, 2002, 115, 3-4.	1.2	110
97	Synthesis and Biological Evaluation of Myoseverin Derivatives:Â Microtubule Assembly Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4497-4500.	2.9	42
98	Mitotic Spindle Assembly In Vitro. Current Protocols in Cell Biology, 2001, 9, Unit 11.13.	2.3	1
99	Importin β Is a Mitotic Target of the Small GTPase Ran in Spindle Assembly. Cell, 2001, 104, 95-106.	13.5	373
100	Methods for the study of centrosome-independent spindle assembly in Xenopus extracts. Methods in Cell Biology, 2001, 67, 241-256.	0.5	13
101	Chromosome movement: Dynein-out at the kinetochore. Current Biology, 2001, 11, R128-R131.	1.8	40
102	Kinetochore function: The complications of becoming attached. Current Biology, 2001, 11, R855-R857.	1.8	11
103	Regulation of Op18 during Spindle Assembly in Xenopus Egg Extracts. Journal of Cell Biology, 2001, 153, 149-158.	2.3	84
104	A dynamic duo of microtubule modulators. Nature Cell Biology, 2000, 2, E11-E12.	4.6	16
105	Spindles get the Ran around. Trends in Cell Biology, 2000, 10, 1-4.	3.6	36
106	Formation of Spindle Poles by Dynein/Dynactin-Dependent Transport of Numa. Journal of Cell Biology, 2000, 149, 851-862.	2.3	292
107	Motor Function in the Mitotic Spindle Minireview. Cell, 2000, 102, 399-402.	13.5	126
108	A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: Biochemical identification using Xenopus egg extracts. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4797-4802.	3.3	62

#	Article	IF	CITATIONS
109	Microtubule-based motor function in mitosis. Current Opinion in Structural Biology, 1999, 9, 268-274.	2.6	42
110	A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Current Biology, 1998, 8, 903-913.	1.8	394
111	Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization. Journal of Cell Biology, 1997, 138, 615-628.	2.3	328
112	Role of chromosomes in assembly of meiotic and mitotic spindles. , 1997, 3, 271-284.		12
113	Mitotic spindles and microtubule dynamics inXenopusegg extracts. Seminars in Cell and Developmental Biology, 1996, 7, 467-473.	2.3	1
114	Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, 1996, 382, 420-425.	13.7	921
115	Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell, 1993, 74, 463-474.	13.5	446
116	Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell, 1990, 61, 579-589.	13.5	628