Alessandra Zambonelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999844/publications.pdf

Version: 2024-02-01

64 papers 2,684 citations

201674 27 h-index 50 g-index

64 all docs

64
docs citations

64 times ranked

2275 citing authors

#	Article	IF	Citations
1	Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	27.8	641
2	Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. PLoS ONE, 2013, 8, e52765.	2.5	175
3	Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology, 2007, 9, 2234-2246.	3.8	120
4	New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungusTuber borchiiVittad FEMS Microbiology Letters, 2005, 247, 23-35.	1.8	114
5	New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biology, 2010, 114, 936-942.	2.5	95
6	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
7	Molecular Phylogeny of Truffles (Pezizales: Terfeziaceae, Tuberaceae) Derived from Nuclear rDNA Sequence Analysis. Molecular Phylogenetics and Evolution, 1999, 13, 169-180.	2.7	85
8	A quick and precise technique for identifying ectomycorrhizas by PCR. Mycological Research, 2006, 110 , $60-65$.	2.5	75
9	Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 199-205.	1.5	74
10	Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy. Food Chemistry, 2009, 116, 143-151.	8.2	66
11	Ultrastructural Studies of the Effects of Allium sativum on Phytopathogenic Fungi in vitro. Plant Disease, 1997, 81, 1241-1246.	1.4	60
12	Solid-phase microextraction gas chromatography/mass spectrometry: a new method for species identification of truffles. Rapid Communications in Mass Spectrometry, 2005, 19, 2365-2370.	1.5	60
13	Chemical Composition and Fungicidal Activity of Commercial Essential Oils of <i>Thymus vulgaris </i> L Journal of Essential Oil Research, 2004, 16, 69-74.	2.7	56
14	The ectomycorrhizal community in natural <i>Tuber borchii</i> â€fgrounds. FEMS Microbiology Ecology, 2010, 72, 250-260.	2.7	54
15	Interactions between Tuber borchii and other ectomycorrhizal fungi in a field plantation. Mycological Research, 2000, 104, 698-702.	2.5	48
16	Molecular identification of Tuber magnatum ectomycorrhizae in the field. Microbiological Research, 2006, 161, 59-64.	5.3	42
17	Soil fungal communities in a Castanea sativa (chestnut) forest producing large quantities of Boletus edulis sensu lato (porcini): where is the mycelium of porcini?. Environmental Microbiology, 2007, 9, 880-889.	3.8	42
18	Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel. Current Genetics, 2002, 42, 161-168.	1.7	37

#	Article	IF	CITATIONS
19	First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza, 2016, 26, 793-798.	2.8	36
20	Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad Conservation Genetics, 2010, 11, 1453-1466.	1.5	35
21	Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biology, 2012, 116, 261-275.	2,5	34
22	Selection of a set of specific primers for the identification of <i>Tuber rufum </i> : a truffle species with high genetic variability. FEMS Microbiology Letters, 2007, 277, 223-231.	1.8	33
23	Multiplex PCR for the identification of whiteTuberspecies. FEMS Microbiology Letters, 2000, 189, 265-269.	1.8	32
24	Spatio-Temporal Dynamic of Tuber magnatum Mycelium in Natural Truffle Grounds. PLoS ONE, 2014, 9, e115921.	2.5	31
25	Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fungal Ecology, 2014, 9, 52-60.	1.6	31
26	Morphological and molecular characterisation OfPulvinula constellatioectomycorrhizae. FEMS Microbiology Letters, 2001, 194, 121-125.	1.8	29
27	Characterization of Tuber borchii and Arbutus unedo mycorrhizas. Mycorrhiza, 2014, 24, 481-486.	2.8	28
28	Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiology, 2012, 12, 93.	3.3	27
29	Restriction fragment length polymorphism species-specific patterns in the identification of white truffles. FEMS Microbiology Letters, 1998, 164, 397-401.	1.8	23
30	Cultivation of Edible Ectomycorrhizal Fungi by in Vitro Mycorrhizal Synthesis., 2005,, 253-267.		22
31	The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycologica, 2013, 47, 145-153.	0.3	22
32	Morphological and functional changes in mycelium and mycorrhizas of Tuber borchii due to heat stress. Fungal Ecology, 2017, 29, 20-29.	1.6	21
33	Draft Genome Sequence of Tuber borchii Vittad., a Whitish Edible Truffle. Genome Announcements, 2018, 6, .	0.8	20
34	Techniques for Host Plant Inoculation with Truffles and Other Edible Ectomycorrhizal Mushrooms. Soil Biology, 2012, , 145-161.	0.8	19
35	Molecular approaches for the detection of truffle species in processed food products. Journal of the Science of Food and Agriculture, 2002, 82, 1391-1397.	3.5	18
36	Effect of 300 mT static and 50ÂHz 0.1 mT extremely low frequency magnetic fields on <i>Tuber borchii</i> mycelium. Canadian Journal of Microbiology, 2012, 58, 1174-1182.	1.7	18

#	Article	IF	CITATIONS
37	The Puberulum Group Sensu Lato (Whitish Truffles). Soil Biology, 2016, , 105-124.	0.8	17
38	Effect of summer soil moisture and temperature on the vertical distribution of Tuber magnatum mycelium in soil. Biology and Fertility of Soils, 2018, 54, 707-716.	4.3	17
39	Laying the Foundations. Soil Biology, 2012, , 3-16.	0.8	16
40	Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants. Environmental Microbiology, 2020, 22, 964-975.	3.8	16
41	Effects of different carbohydrate sources on the growth of Tuber borchii Vittad. mycelium strains in pure culture. Molecular and Cellular Biochemistry, 2001, 218, 65-70.	3.1	15
42	Ectomycorrhizal Fungal Communities of Edible Ectomycorrhizal Mushrooms. Soil Biology, 2012, , 105-124.	0.8	15
43	Microbial and pigment profile of the reddish patch occurring within Tuber magnatum ascomata. Fungal Biology, 2018, 122, 1134-1141.	2.5	15
44	Effects of fungicides on Tuber borchii and Hebeloma sinapizans ectomycorrhizas. Mycological Research, 2001, 105, 611-614.	2.5	14
45	Mycorrhizal synthesis of Tuber albidum pico with Castanea sativa mill., Quercus suber L. and Alnus cordata loisel. Agriculture, Ecosystems and Environment, 1990, 28, 563-567.	5.3	13
46	Comparison of Two Schizophyllum commune Strains in Production of Acetylcholinesterase Inhibitors and Antioxidants from Submerged Cultivation. Journal of Fungi (Basel, Switzerland), 2021, 7, 115.	3.5	13
47	Valorization of Hazelnut Shells as Growing Substrate for Edible and Medicinal Mushrooms. Horticulturae, 2022, 8, 214.	2.8	13
48	Truffle Ecology: Genetic Diversity, Soil Interactions and Functioning., 2017,, 231-252.		11
49	Effect of slug mycophagy on Tuber aestivum spores. Fungal Biology, 2021, 125, 796-805.	2.5	10
50	Chapter 23 Mycophagy and Spore Dispersal by Vertebrates. Mycology, 2017, , 347-358.	0.5	9
51	Morphological and Molecular Modifications Induced by Different Carbohydrate Sources in <i>Tuber borchii</i> . Journal of Molecular Microbiology and Biotechnology, 2010, 18, 120-128.	1.0	8
52	Expanding the understanding of a forest ectomycorrhizal community by combining root tips and fruiting bodies: a case study of Tuber magnatum stands. Turkish Journal of Botany, 2015, 39, 527-534.	1.2	8
53	Bacteria-produced ferric exopolysaccharide nanoparticles as iron delivery system for truffles (Tuber) Tj ETQq $1\ 1\ 0$.784314 r	gBT /Overloc
54	Degradative Ability of Mushrooms Cultivated on Corn Silage Digestate. Molecules, 2020, 25, 3020.	3.8	7

#	Article	IF	CITATIONS
55	Enhancing White Truffle (Tuber magnatum Picco and T. borchii Vittad.) Cultivation Through Biotechnology Innovation., 2021,, 505-532.		7
56	137Cs Content in the Fruit Bodies of Various Tuber Species. Health Physics, 1996, 71, 956-959.	0.5	6
57	<i>Tuber iranicum</i> , sp. nov., a truffle species belonging to the Excavatum clade. Mycologia, 2020, 112, 932-940.	1.9	5
58	Co-occurrence of true truffle mycelia in Tuber magnatum fruiting sites. Mycorrhiza, 2021, 31, 389-394.	2.8	5
59	Synthesis of mycorrhizas on Quercus suber using Hebeloma sinapizans and Paxillus involutus. Agriculture, Ecosystems and Environment, 1990, 28, 35-40.	5.3	3
60	<i>Tuber melosporum</i> smooth spores: an anomalous feature in the genus <i>Tuber</i> . Mycologia, 2016, 108, 174-178.	1.9	3
61	Truffles and Morels: Two Different Evolutionary Strategies of Fungal-Plant Interactions in the Pezizales. , 2019, , 69-93.		3
62	Effects of biogenerated ferric hydroxides nanoparticles on truffle mycorrhized plants. Mycorrhiza, 2020, 30, 211-219.	2.8	3
63	Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. Fungal Biology, 2021, , 107-146.	0.6	3
64	ECOLOGICAL AND GENETIC ADVANCES IN THE CULTIVATION OF TUBER SPP Revista Fitotecnia Mexicana, 2017, 40, 371-377.	0.1	3