Garry S Hanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/799966/publications.pdf

Version: 2024-02-01

			94433	9	5266
156		5,465	37		68
papers		citations	h-index		g-index
	. '			_	
158		158	158		5193
all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nature Chemistry, 2022, 14, 500-506.	13.6	32
2	Red Absorbing Cyclometalated Ir(III) Diimine Photosensitizers Competent for Hydrogen Photocatalysis. Inorganic Chemistry, 2022, 61, 5245-5254.	4.0	5
3	Synthesis, structure, and hydrogen evolution studies of a heteroleptic Co(III) complex. Inorganica Chimica Acta, 2021, 517, 120195.	2.4	1
4	Copper catalysts for photo- and electro-catalytic hydrogen production. Inorganic Chemistry Frontiers, 2021, 8, 1015-1029.	6.0	21
5	In-Depth Study of the Electronic Properties of NIR-Emissive ΰ ³ N Terpyridine Rhenium(I) Dicarbonyl Complexes. Inorganic Chemistry, 2021, 60, 70-79.	4.0	10
6	Substituted 2,4-Di(pyridin-2-yl)pyrimidine-Based Ruthenium Photosensitizers for Hydrogen Photoevolution under Red Light. Inorganic Chemistry, 2021, 60, 292-302.	4.0	14
7	Two Rull Linkage Isomers with Distinctly Different Charge Transfer Photophysics. Inorganic Chemistry, 2021, 60, 3677-3689.	4.0	3
8	Synthesis, characterization and molecular docking study of Nitro(4′-(2-pyridyl)-2,2′:6′,2″-terpyridyl) Palladium(II) nitrate. Inorganic Chemistry Communication, 2021, 126, 108494.	3.9	3
9	Electronic Properties of Rhenium(I) Carbonyl Complexes Bearing Strongly Donating Hexahydroâ€Pyrimidopyrimidine Based Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 2570-2577.	2.0	3
10	Electrochemical and Photophysical Study of Homoleptic and Heteroleptic Methylated Ru(II) Bisâ€terpyridine Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 2822-2829.	2.0	3
11	Enhancing the photophysical properties of Ru(II) complexes by specific design of tridentate ligands. Coordination Chemistry Reviews, 2021, 446, 214127.	18.8	19
12	Dinuclear 2,4-di(pyridin-2-yl)-pyrimidine based ruthenium photosensitizers for hydrogen photo-evolution under red light. Dalton Transactions, 2021, 50, 16528-16538.	3.3	1
13	Synthesis of a novel bipyrimidine dicarboxylic acid ligand for the preparation of panchromatic ruthenium dyes. Inorganica Chimica Acta, 2020, 499, 119194.	2.4	2
14	Design of a [FeFe] macrocyclic metallotecton for light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 2699-2708.	7.1	10
15	Conformational Solvatomorphism in a [2]Catenane. Crystal Growth and Design, 2020, 20, 5820-5833.	3.0	2
16	Controlling photocatalytic reduction of CO ₂ in Ru(<scp>ii</scp>)/Re(<scp>i</scp>) dyads <i>via</i> linker oxidation state. Chemical Communications, 2020, 56, 10750-10753.	4.1	7
17	ToF-SIMS study of selective anchoring of Ru(tpy)2 complexes on zirconium-phosphate functionalized oxide surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	1
18	N-substituted 2-pyridinecarbothioamides and polypyridyl mixed-ligand cobalt(III)-containing complexes for photocatalytic hydrogen generation. Inorganica Chimica Acta, 2020, 510, 119726.	2.4	4

#	Article	IF	Citations
19	Synthesis, crystal structure, characterization of pyrazine diaminotriazine based complexes and their systematic comparative study with pyridyl diaminotriazine based complexes for light-driven hydrogen production. Polyhedron, 2020, 180, 114412.	2.2	8
20	Design and photophysical studies of iridium(<scp>iii</scp>)â€"cobalt(<scp>iii</scp>) dyads and their application for dihydrogen photo-evolution. Dalton Transactions, 2019, 48, 15567-15576.	3.3	19
21	Mimicking 2,2′:6′,2′′:6′′,2′′′-quaterpyridine complexes for the light-driven hydrogen e synthesis, structural, thermal and physicochemical characterizations. RSC Advances, 2019, 9, 28153-28164.	volution re 3.6	eaction: 10
22	Heteroleptic ruthenium bis-terpyridine complexes bearing a 4-(dimethylamino)phenyl donor and free coordination sites for hydrogen photo-evolution. Dalton Transactions, 2019, 48, 15136-15143.	3.3	13
23	A nano-junction of self-assembled mixed-metal-centre molecular wires on transparent conductive oxides. Nanoscale, 2019, 11, 4788-4793.	5.6	6
24	Photocatalytic Hydrogen Evolution Driven by a Heteroleptic Ruthenium(II) Bis(terpyridine) Complex. Inorganic Chemistry, 2019, 58, 9127-9134.	4.0	37
25	Photodetection of DNA mismatches by dissymmetric Ru(<scp>ii</scp>) acridine based complexes. Inorganic Chemistry Frontiers, 2019, 6, 2260-2270.	6.0	8
26	Converging Energy Transfer in Polynuclear Ru(II) Multiterpyridine Complexes: Significant Enhancement of Luminescent Properties. Inorganic Chemistry, 2018, 57, 2639-2653.	4.0	16
27	A Smorgasbord of 17 Cobalt Complexes Active for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 9820-9832.	3.3	39
28	Unusual Photooxidation of S-Bonded Mercaptopyridine in a Mixed Ligand Ruthenium(II) Complex with Terpyridine and Bipyridine Ligands. Inorganic Chemistry, 2018, 57, 4898-4905.	4.0	14
29	Trifluoromethyl-Substituted Iridium(III) Complexes: From Photophysics to Photooxidation of a Biological Target. Inorganic Chemistry, 2018, 57, 1356-1367.	4.0	29
30	Blueâ€Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2018, 57, 8027-8031.	13.8	106
31	Blueâ€Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2018, 130, 8159-8163.	2.0	33
32	Self-Assembled Molecular Squares as Supramolecular Tectons. Crystal Growth and Design, 2018, 18, 2016-2030.	3.0	27
33	Proton sensitive charge-transfer excited states in bis-terdentate cyclometalated Ir(III) complexes: Spectroscopic and theoretical investigation. Inorganica Chimica Acta, 2018, 471, 8-16.	2.4	6
34	A Zinc(II) Benzamidinate <i>N</i> â€Oxide Complex as an Aggregationâ€Induced Emission Material: toward Solutionâ€Processable White Organic Lightâ€Emitting Devices. European Journal of Inorganic Chemistry, 2018, 4322-4330.	2.0	9
35	Probing the effect of \hat{I}^2 -triketonates in visible and NIR emitting lanthanoid complexes. Dalton Transactions, 2018, 47, 7956-7964.	3.3	12
36	Modular Cavities: Induced Fit of Polar and Apolar Guests into Halogen-Based Receptors. Inorganic Chemistry, 2018, 57, 6222-6225.	4.0	2

#	Article	IF	Citations
37	Alkyl chain length effects on double-deck assembly at a liquid/solid interface. Nanoscale, 2018, 10, 14993-15002.	5.6	18
38	Ultrafast charge transfer excited state dynamics in trifluoromethyl-substituted iridium(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2018, 20, 27256-27260.	2.8	16
39	Visible and Nearâ€IR Emissions from <i>k</i> ² <i>N</i> ―and <i>k</i> ³ <i>N</i> ×1] Headâ€ŧoâ€₹ Bonding Strategy. Chemistry - A European Journal, 2017, 23, 6370-6379.	a ä. 3	23
40	Photocatalytic Hydrogen Production Using a Red-Absorbing Ir(III)–Co(III) Dyad. Inorganic Chemistry, 2017, 56, 10875-10881.	4.0	59
41	Solidâ€State NIRâ€Luminescence of 1 <i>H</i> à€pyrido[1,2,3â€ <i>de</i>]quinoxaliniâ€4â€ium Cationic Dyes ChemistrySelect, 2017, 2, 3952-3958.	1.5	2
42	Selfâ€Assembly of Cyclohelicate [M ₃ L ₃] Triangles Over [M ₄ L ₄ Squares, Despite Nearâ€Linear Bisâ€terdentate L and Octahedral M. Chemistry - A European Journal, 2017, 23, 14193-14199.	3.3	19
43	A Bisamide Ruthenium Polypyridyl Complex as a Robust and Efficient Photosensitizer for Hydrogen Production. ChemSusChem, 2017, 10, 4436-4441.	6.8	18
44	Photoâ€Induced Assembly of a Luminescent Tetraruthenium Square. Chemistry - A European Journal, 2017, 23, 16497-16504.	3.3	19
45	Facile One-Pot Synthesis of Ruthenium(II) Quaterpyridine-Based Photosensitizers for Photocatalyzed Hydrogen Production. Inorganic Chemistry, 2017, 56, 9515-9524.	4.0	25
46	Going against the flow: Os(<scp>ii</scp>)-to-Ru(<scp>ii</scp>) energy transfer in rod-like polypyridyl chromophore. Chemical Communications, 2017, 53, 10496-10499.	4.1	7
47	Energy transfer in rhodium–ruthenium dimer-of-dimer assemblies. Inorganica Chimica Acta, 2017, 454, 208-215.	2.4	4
48	Ruthenium bistridentate complexes with non-symmetrical hexahydro-pyrimidopyrimidine ligands: a structural and theoretical investigation of their optical and electrochemical properties. Dalton Transactions, 2016, 45, 12507-12517.	3.3	10
49	Doubleâ€Decker Coordination Cages. European Journal of Inorganic Chemistry, 2016, 2016, 2816-2827.	2.0	37
50	Hydrogen Photoevolution from a Greenâ€Absorbing Iridium(III)–CobaltÂ(III) Dyad. European Journal of Inorganic Chemistry, 2016, 2016, 1779-1783.	2.0	27
51	Design and Photophysical Studies of Acridineâ€Based Ru ^{II} Complexes for Applications as DNA Photoprobes. European Journal of Inorganic Chemistry, 2016, 2016, 3649-3658.	2.0	12
52	The Relationship between Structure and Properties in Zn ^{II} Complexes of Bulky <i>N</i> , <i>NA∮i>,<ii>N′</ii></i> â€Diarylformamidinate <i>N</i> â€Oxides. European Journal of Inorganic Chemistry, 2016, 2016, 177-185.	2.0	5
53	Controlling the emission efficiency of blue-green iridium(iii) phosphorescent emitters and applications in solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8939-8946.	5.5	23
54	A heptanuclear light-harvesting metal-based antenna dendrimer with six Ru(<scp>ii</scp>)-based chromophores directly powering a single Os(<scp>ii</scp>)-based energy trap. Dalton Transactions, 2016, 45, 19238-19241.	3.3	19

#	Article	IF	CITATIONS
55	Long-lived, red-emitting excited state of a Ru(II) complex of a diaminotriazine ligand. Polyhedron, 2016, 108, 100-103.	2.2	8
56	Geometry and Spin Change at the Heart of a Cobalt(II) Complex: A Special Case of Solvatomorphism. Chemistry - A European Journal, 2015, 21, 9474-9481.	3.3	20
57	Reversible Mechanical Interlocking of Dâ€Shaped Molecular Karabiners bearing Coordinationâ€Bond Loaded Gates: Route to Selfâ€Assembled [2]Catenanes. Chemistry - A European Journal, 2015, 21, 15174-15187.	3.3	33
58	Lanthanoid/Alkali Metal βâ€Triketonate Assemblies: A Robust Platform for Efficient NIR Emitters. Chemistry - A European Journal, 2015, 21, 18354-18363.	3.3	24
59	Simple Solubilization of the Traditional 2,2′:6′,2′′-Terpyridine LigandÂ-in Organic Solvents by Substitut with 4,4′′-Di-tert-butyl Groups. Synthesis, 2015, 47, 3849-3858.	ion 2.3	5
60	Synthesis of discrete Re($<$ scp $>$ i $<$ /scp $>$) di- and tricarbonyl assemblies using a [4 \tilde{A} — 1] directional bonding strategy. Dalton Transactions, 2015, 44, 41-45.	3.3	23
61	A Facile Route to Bis(pyridylâ€1,3,5â€triazine) Ligands with Fluorescing Properties. European Journal of Organic Chemistry, 2015, 2015, 2366-2373.	2.4	5
62	A Facile Route to Substituted Bidentate and Tridentate Ligands Capable of Forming Six-membered Chelate Rings with Transition-Metal Ions. Synlett, 2015, 26, 1408-1412.	1.8	9
63	Twofac-tricarbonylrhenium(I) azadipyrromethene (ADPM) complexes: ligand-substitution effect on crystal structure. Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 122-127.	0.5	4
64	Influence of Ligand Substitution Pattern on Structure in Cobalt(II) Complexes of Bulky <i>N</i> , <i>N\delta \in \in \in \in \in \in \in \in \in \in</i>	2.0	15
65	One- and two-dimensional polymerisation of homoleptic M(II)-complexes of $4\hat{a}\in (3\text{-pyridyl})-2,2\hat{a}\in (2,2\hat{a}\in (3\text{-pyridyl})-2,2\hat{a}\in (3-pyrid$	l⋭ .4	15
66	Red-Emitting [Ru(bpy) ₂ (N-N)] ²⁺ Photosensitizers: Emission from a Ruthenium(II) to 2,2′-Bipyridine ³ MLCT State in the Presence of Neutral Ancillary "Super Donor―Ligands. Inorganic Chemistry, 2014, 53, 1679-1689.	4.0	33
67	<i>trans</i> -Dichloridobis(pyridazine-lº <i>N</i>)palladium(II). Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m17-m17.	0.2	1
68	Optoelectronic Properties and Structural Effects of the Incremental Addition of Pyridyl Moieties on a Rhodium Dimer. Journal of Physical Chemistry A, 2014, 118, 10340-10352.	2.5	6
69	Near infra-red emission from a mer-Ru(ii) complex: consequences of strong Ïf-donation from a neutral, flexible ligand with dual binding modes. Chemical Communications, 2014, 50, 6846.	4.1	39
70	Lanthanoid \hat{l}^2 -triketonates: a new class of highly efficient NIR emitters for bright NIR-OLEDs. Chemical Communications, 2014, 50, 11580-11582.	4.1	39
71	Structural, electrochemical and photophysical investigations of Re($<$ scp $>$ i $<$ /scp $>$)-complexes of $^{\circ}$ e $<$ sup $>$ 8 $<$ 1811.	3.3	18
72	Enhanced stereoselectivity in a di-Ru(<scp>ii</scp>) complex of an achiral bis-bidentate ligand. Chemical Communications, 2014, 50, 3303-3305.	4.1	20

#	Article	IF	Citations
73	Self-assembly of supramolecular triangles with neutral trans-PdCl2 directing units. RSC Advances, 2014, 4, 21262.	3.6	20
74	Near infra-red emitting Ru(<scp>ii</scp>) complexes of tridentate ligands: electrochemical and photophysical consequences of a strong donor ligand with large bite angles. Chemical Science, 2014, 5, 4800-4811.	7.4	49
75	Design, synthesis and excited-state properties of mononuclear Ru(<scp>ii</scp>) complexes of tridentate heterocyclic ligands. Chemical Society Reviews, 2014, 43, 6184.	38.1	155
76	Introducing asymmetry in tetradentate azadipyrromethene chromophores: a systematic study of the impact on electronic and photophysical properties. Physical Chemistry Chemical Physics, 2014, 16, 22207-22221.	2.8	9
77	Stereoselective formation of a meso-diruthenium(ii,ii) complex and tuning the properties of its monoruthenium analogues. Dalton Transactions, 2014, 43, 6567.	3.3	18
78	Stoichiometrically Controlled Revocable Selfâ€Assembled "Spiro―versus Quadrupleâ€Stranded "Doubleâ€Decker―Type Coordination Cages. Chemistry - A European Journal, 2014, 20, 13122-13126.	3.3	58
79	Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chemical Society Reviews, 2014, 43, 3342-3405.	38.1	472
80	Covalent multi-component systems of polyoxometalates and metal complexes: Toward multi-functional organic–inorganic hybrids in molecular and material sciences. Coordination Chemistry Reviews, 2014, 281, 64-85.	18.8	155
81	Rhodium Amidinate Dimers as Structural and Functional Hubs for Multimetallic Assemblies. Inorganic Chemistry, 2014, 53, 624-636.	4.0	8
82	Palladium(II)-Directed Self-Assembly of a Neutral Molecular Triangle as a Heteroditopic Receptor for lon Pairs. Inorganic Chemistry, 2014, 53, 10039-10041.	4.0	7
83	Synthesis, Crystal Structure and Photophysical Properties of Pyrene–Helicene Hybrids. Chemistry - A European Journal, 2013, 19, 16295-16302.	3.3	80
84	Neutral Re(I) complexes for anion sensing. Supramolecular Chemistry, 2012, 24, 595-603.	1.2	21
85	N-[2,6-Bis(1-methylethyl)phenyl]pyridine-4-carboxamide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2975-o2976.	0.2	1
86	Azadipyrromethene Dye Derivatives in Coordination Chemistry: the Structure–Property Relationship in Homoleptic Metal(II) Complexes. Inorganic Chemistry, 2012, 51, 12132-12141.	4.0	33
87	Diimine Triscarbonyl Re(I) of Isomeric Pyridyl-fulvene Ligands: an Electrochemical, Spectroscopic, and Computational Investigation. Inorganic Chemistry, 2012, 51, 12738-12747.	4.0	15
88	Changing the Role of 2,2′-Bipyridine from Secondary Ligand to Protagonist in [Ru(bpy)2(Nâ^'N)]2+Complexes: Low-Energy, Red Emission from a Ruthenium(II)-to-2,2′-Bipyridine3MLCT State. Inorganic Chemistry, 2011, 50, 7-9.	4.0	16
89	Synthesis, Structural, and Photophysical Investigation of Diimine Triscarbonyl Re(I) Tetrazolato Complexes Inorganic Chemistry, 2011, 50, 1229-1241.	4.0	74
90	Synthesis and crystal structure of a rare square-planar Co(<scp>ii</scp>) complex of a hydroxyamidinate ligand. Dalton Transactions, 2011, 40, 1038-1040.	3.3	25

#	Article	lF	CITATIONS
91	Discrete Covalent Organic–Inorganic Hybrids: Terpyridine Functionalized Polyoxometalates Obtained by a Modular Strategy and Their Metal Complexation. Inorganic Chemistry, 2011, 50, 6737-6745.	4.0	85
92	Red Phosphorescence in Rull Complexes of a Tridentate N-Heterocyclic Carbene Ligand Incorporating Tetrahydropyrimidine. European Journal of Inorganic Chemistry, 2011, 2011, 39-44.	2.0	23
93	Paramagnetic Ru(III) complexes of tridentate ligands: Characterization of useful intermediates for heteroleptic Ru(II) complexes. Inorganic Chemistry Communication, 2011, 14, 399-402.	3.9	18
94	Facile Synthesis of Hydroxyformamidines by the N-Oxidation of Their Corresponding Formamidines. Synlett, 2011, 2011, 405-409.	1.8	2
95	Synthesis, photophysics, and electrochemistry of thiophene–pyridine and thiophene–pyrimidine dyad comonomers. Canadian Journal of Chemistry, 2010, 88, 236-246.	1.1	24
96	8-(Diphenylphosphanyl)quinoline. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2847-o2847.	0.2	2
97	4-Bromo-N,N′-bis(4-methoxyphenyl)benzamidine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2777-o2777.	0.2	1
98	Synthesis and Photophysical Properties of 3,8â€Disubstituted 1,10â€Phenanthrolines and Their Ruthenium(II) Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 4962-4971.	2.0	32
99	Synthesis of a halo-methylphenylene periphery-functionalized triazine-based dendritic molecule with a 3,3′-dimethyl-biphenyl linker using tris(halo-methylphenylene)triazines as building blocks. Tetrahedron Letters, 2009, 50, 1851-1854.	1.4	7
100	A divergent strategy for covalently-tethered (tpy)2Ru(ii) systems based on Rh2(N,N′-diphenylbenzamidinates)4. Dalton Transactions, 2009, , 3671.	3.3	13
101	Synthesis and photophysical properties of naphthyl-, phenanthryl-, and pyrenyl-appended bis(pyridyl)triazine ligands and their Zn(II) and Ru(II) complexes ¹ . Canadian Journal of Chemistry, 2009, 87, 254-263.	1.1	6
102	<i>N</i> ¹ , <i>N</i> ² -Bis(2,6-dimethylphenyl)- <i>N</i> ¹ -hydroxyformamic dichloromethane solvate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2485-o2485.	line <i>N<!--<br-->0.2</i>	i>, <i>N</i> â
103	4-Bromo-N-phenylbenzamidoxime. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2820-o2820.	0.2	1
104	Bis(2,2′-bipyridine)(5-isothiocyanato-1,10-phenanthroline)ruthenium(II) bis(hexafluoridophosphate) acetonitrile solvate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m1184-m1184.	0.2	0
105	Self-assembly of discrete metallosupramolecular luminophores. Coordination Chemistry Reviews, 2008, 252, 903-921.	18.8	90
106	The effect of steric hindrance on the Fe(II) complexes of triazine-containing ligands. Polyhedron, 2008, 27, 493-501.	2.2	27
107	Carboxy-derived (tpy)2Ru2+ complexes as sub-units in supramolecular architectures: The solubilized ligand 4′-(4-carboxyphenyl)-4,4″-di-(tert-butyl)tpy and its homoleptic Ru(II) complex. Inorganica Chimica Acta, 2008, 361, 2259-2269.	2.4	41
108	Spanning Pairs of Rh ₂ (acetate) ₄ Units with Ru(II) Complexes. Inorganic Chemistry, 2008, 47, 6112-6114.	4.0	15

#	Article	IF	CITATIONS
109	[2,6-Bis(5-chloropyrimidin-2-yl-l̂ºN)pyridine-l̂ºN](2,2′:6′,2′′-terpyridine-l̂º3N,N′,N′′)ruthenium(ll⟩bis(hexafluoridophosphate) acetonitrile disolvate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m326-m326.) 0.2	4
110	5-Phenyl-2-(4-pyridyl)pyrimidine. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o584-o584.	0.2	3
111	Preparation, Photophysics, and Electrochemistry of Segmented Comonomers Consisting of Thiophene and Pyrimidine Units:  New Monomers for Hybrid Copolymers. Journal of Physical Chemistry B, 2007, 111, 11407-11418.	2.6	45
112	Self-Assembled Light-Harvesting Systems:  Ru(II) Complexes Assembled about Rhâ^Rh Cores. Journal of the American Chemical Society, 2007, 129, 10479-10488.	13.7	69
113	Luminescent polynuclear assemblies. Chemical Society Reviews, 2007, 36, 1466.	38.1	149
114	Ruthenium(II) Complexes with Improved Photophysical Properties Based on Planar 4â€~-(2-Pyrimidinyl)-2,2â€~:6â€~,2â€~Ââ€~-terpyridine Ligands. Inorganic Chemistry, 2007, 46, 2854-2863.	4.0	78
115	Tuning the Excited-State Energy of the Organic Chromophore in Bichromophoric Systems Based on the Rull Complexes of Tridentate Ligands. Chemistry - A European Journal, 2007, 13, 2837-2846.	3.3	37
116	Ru(II) and Zn(II) complexes of multicomponent ligands incorporating triazine-based tridentate ligands. Inorganic Chemistry Communication, 2007, 10, 229-233.	3.9	12
117	Polymeric structures of a pair of linear, dicarboxylate (tpy)2Ru2+ analogues. Inorganic Chemistry Communication, 2007, 10, 1365-1370.	3.9	9
118	The multichromophore approach: A case of temperature controlled switching between single and dual emission in Ru(II) polypyridyl complexes. Inorganica Chimica Acta, 2007, 360, 876-884.	2.4	16
119	Synthesis and properties of 6,6′-dithienyl-4,4′-bipyrimidine and its hetero- and homo-leptic Ru(II) complexes. Polyhedron, 2007, 26, 4929-4935.	2.2	5
120	Diethyl 4-(4-tert-butylphenyl)pyridine-2,6-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2560-o2562.	0.2	1
121	Bis [4′-(3,5-dibromophenyl)-2,2′:6′,2′′-terpyridine]ruthenium(II) bis(hexafluorophosphate) acetonitri disolvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1561-m1561.	le 0.2	6
122	(N-Phenylimino)bis[phosphonic bis(diphenylamide)]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4428-o4428.	0.2	0
123	Convenient Oneâ€Pot Procedures for the Synthesis of 2,2′:6′,2″â€Terpyridine. Synthetic Communications 2006, 36, 1721-1726.	⁵ '2.1	10
124	The Multichromophore Approach: Prolonged Room-Temperature Luminescence Lifetimes in Rull Complexes Based on Tridentate Polypyridine Ligands. Chemistry - A European Journal, 2006, 12, 8539-8548.	3.3	78
125	Synthesis and properties of mono- and oligo-nuclear Ru(II) complexes of tridentate ligands: The quest for long-lived excited states at room temperature. Coordination Chemistry Reviews, 2006, 250, 1763-1782.	18.8	221
126	Synthesis and properties of red emitter Ru(II) complexes based on 6,6′-disubstituted-4,4′-bipyrimidine. Inorganica Chimica Acta, 2006, 359, 766-774.	2.4	18

#	Article	IF	Citations
127	Synthesis and properties of Re(I) tricarbonyl complexes of 6,6′-disubstituted-4,4′-bipyrimidines with high energy excited states suitable for incorporation into polynuclear arrays. Inorganica Chimica Acta, 2006, 359, 2599-2607.	2.4	14
128	Heteroleptic ruthenium(II) complexes based on $6,6\hat{a}\in^2$ -disubstituted $4,4\hat{a}\in^2$ -bipyrimidines: New room temperature red-emitting species. Inorganic Chemistry Communication, 2005, 8, 559-563.	3.9	15
129	Coll Complexes of Triazine-Based Tridentate Ligands with Positive and Attractive Coll/III Redox Couples. European Journal of Inorganic Chemistry, 2005, 2005, 1223-1226.	2.0	20
130	Synthesis of a Novel Series of 6,6'-Disubstituted 4,4'-Bipyrimidines by Radical Anion Coupling: New π-Accepting Ligands for Coordination Chemistry. European Journal of Organic Chemistry, 2005, 2005, 3775-3780.	2.4	25
131	The Structural and Functional Roles of Rhodium(II)-Rhodium(II) Dimers in Multinuclear Ruthenium(II) Complexes. Angewandte Chemie - International Edition, 2005, 44, 4881-4884.	13.8	32
132	A hybrid bidentate and tridentate ruthenium(II) complex incorporating triazine and polypyridine carbene ligands. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2311-m2313.	0.2	3
133	A Facile Route to Sterically Hindered and Non-Hindered 4′-Aryl-2,2′:6′,2′′-Terpyridines. Synlett, 2009 1251-1254.	5,2005, 1.8	78
134	Spectroscopy and electrochemistry of new $6,6\hat{a}\in^2$ -disubstituted- $4,4\hat{a}\in^2$ -bipyrimidine molybdenum(0) and tungsten(0) tetracarbonyl complexes. Canadian Journal of Chemistry, 2005, 83, 1114-1119.	1.1	6
135	Synthesis and Properties of the Elusive Ruthenium(II) Complexes of 4 -Cyano-2,2 :6 ,2   -terpyrid Inorganic Chemistry, 2005, 44, 5-7.	ine 4:0	78
136	Designing tridentate ligands for ruthenium(ii) complexes with prolonged room temperature luminescence lifetimes. Chemical Society Reviews, 2005, 34, 133.	38.1	392
137	Ruthenium Complexes of Easily Accessible Tridentate Ligands Based on the 2-Aryl-4,6-bis(2-pyridyl)-s-triazine Motif: Absorption Spectra, Luminescence Properties, and Redox Behavior. Chemistry - A European Journal, 2004, 10, 3640-3648.	3.3	101
138	Coordination arrays \hat{A} — Synthesis and characterization of tetranuclear complexes of grid-type. Canadian Journal of Chemistry, 2004, 82, 1428-1434.	1.1	9
139	Creating New Binding Sites in Ligands and Metal Complexes Using the Negishi Cross-Coupling Reaction. Inorganic Chemistry, 2003, 42, 5-7.	4.0	53
140	Facile syntheses of tridentate ligands for room-temperature luminescence in ruthenium complexes. Chemical Communications, 2002, , 1356-1357.	4.1	48
141	Dynamic Behavior in Diplatinum Metalloreceptors. Inorganic Chemistry, 2002, 41, 4987-4989.	4.0	31
142	A Strategy for Improving the Room-Temperature Luminescence Properties of Ru(II) Complexes with Tridentate Ligands. Journal of the American Chemical Society, 2002, 124, 7912-7913.	13.7	130
143	New dinuclear Ru(ii) complexes containing free chelating polypyridine sites within the bridging ligands: absorption spectra, luminescence properties, redox behavior and sensing propertiesElectronic supplementary information (ESI) available: Absorption spectra of complexes 1 and 2 in the presence and absence of acetic acid. See http://www.rsc.org/suppdata/pp/b2/b206362j/.	2.9	35
144	Photochemical and Photobiological Sciences, 2002, 1, 982. Solution and solid-state characterization of a dicopper receptor for large substrates. Canadian Journal of Chemistry, 2002, 80, 496-498.	1.1	12

#	Article	IF	CITATIONS
145	Self-Assembly, Characterisation, and Crystal Structure of Multinuclear Metal Complexes of the [2×3] and [3×3] Grid-Type. Chemistry - A European Journal, 2002, 8, 3458.	3.3	45
146	Toward high nuclearity ruthenium complexes: creating new binding sites in metal complexes. Chemical Communications, 2000, , 819-820.	4.1	36
147	Absorption and Emission Properties of Di- and Trinuclear Ruthenium(II) Rack-Type Complexes. European Journal of Inorganic Chemistry, 1999, 1999, 1409-1414.	2.0	40
148	Controlling the Direction of Photoinduced Energy Transfer in Multicomponent Species. Chemistry - A European Journal, 1999, 5, 3523-3527.	3.3	40
149	Synthesis, structure, and properties of oligo-tridentate ligands; covalently assembled precursors of coordination arrays. Canadian Journal of Chemistry, 1997, 75, 169-182.	1.1	120
150	Coordination Arrays: Tetranuclear Cobalt(II) Complexes with $[2\tilde{A}-2]$ -Grid Structure. Angewandte Chemie International Edition in English, 1997, 36, 1842-1844.	4.4	200
151	Coordination Arrays: Synthesis and Characterisation of Rackâ€Type Dinuclear Complexes. Chemistry - A European Journal, 1996, 2, 1292-1302.	3.3	92
152	Synthesis, Structure, and Properties of Dinuclear and Trinuclear Rack-Type Rull Complexes. Angewandte Chemie International Edition in English, 1995, 34, 1122-1124.	4.4	129
153	Photophysical properties of a dinuclear rack-type Ru(II) complex and of its components. Chemical Physics Letters, 1995, 243, 102-107.	2.6	24
154	Thiacyclophanes containing the -S(CH2)3S(CH2)3S- linkage. Synthesis and structures of 2,6,10-trithia [11]-o-cyclophane (TT[ll]OC), 2,6,10-trithia [11]-m-cyclophane (TT[11]MC), and the palladation product $[Pd(TT[11]MC)][BF4]$. Inorganic Chemistry, 1992, 31, 3286-3291.	4.0	39
155	Metalation of the crown thioether ligand 2,6,10-trithia [11]-m-cyclophane (TT[11]MC). Synthesis, structure, and reactivity of $[Pt(TT[11]MC)][BF4]$ and $[Pt(TT[11]MC)][BF4]$ and $[Pt(TT[11]MC)][BF4]$. Organometallics, 1992, 11, 3063-3068.	2.3	19
156	Dependence of complex structure on ligand conformation in palladium(II) complexes of the crown thioether ligands 2,5,8-trithia[9]-o-benzenophane (TT[9]OB) and 2,5,8-trithia[9]-m-benzenophane (TT[9]MB). Structures of PdCl2(TT[9]OB).cntdot.DMSO and PdCl2(TT[9]MB). Inorganic Chemistry, 1991, 30, 4644-4647.	4.0	37